

RECEIVED

DA2019/143

5 September 2019

JQZ PTY LTD

Remediation Action Plan

11-17 Columbia Lane, Homebush, NSW

Report E24275.E06_Rev2 16 August 2019

Document Control

Report No: E24275.E06_Rev2

Copies		Recipient
1	Soft Copy (PDF – Secured, issued by email)	Mr Jeremy Hung JQZ Pty Ltd Retail 24 & 25, 1 Nipper Street, HOMEBUSH NSW 2140
2	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Author

ALEJANDRA BELTRAN Civil/Environmental Engineer		MALCOLM DALE Senior Principal – Contaminated Land	
Revision	Details	Date	Amended By
0	Original	02 July 2019	
1	Revised document	11 July 2019	AB
2	Revised based on Town Planner comments	16 August 2019	AB

© 2019 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

EX	ECU.		I	
1.	INT	RODUCTION	1	
	1.1	Background	1	
	1.2	Proposed Development	2	
	1.3	Remedial Objective	2	
	1.4	Remedial Scope of Works	2	
	1.5	Regulatory Framework	3	
	1.6	Deviation from This RAP	4	
2.	SIT	E DESCRIPTION	5	
	2.1	Property Identification, Location and Physical Setting	5	
	2.2	Surrounding Land Use	5	
	2.3	Regional Setting	6	
	2.4	Groundwater Bore Records and Groundwater Use	7	
3.	SIT	SITE CHARACTERISATION		
	3.1	Available documents	8	
	3.2	Additional Documents	10	
	3.3	PFAS Assessment	10	
	3.4	Existing Site Contamination	11	
		3.4.1 in-situ USTs	11	
		3.4.2 Previous Commercial Activities	11	
		3.4.3 Soll Vapour 3.4.4 Groundwater	12	
	~ -		12	
	3.5	Potential Contaminants of Concern	12	
4.	COI	NCEPTUAL SITE MODEL	13	
	4.1	Subsurface Conditions	13	
	4.2	Contamination Pathways	14	
	4.3	Data Gaps	15	
	4.4	Extend of Remediation Required	15	
		4.4.1 Remediation Areas	15	
	4.5	Approximate Soil Volumes	16	
5.	REMEDIATION GOALS		17	
	5.1	Remediation Criteria	17	
		5.1.1 Soil Remediation (Validation) Criteria	17	
		5.1.2 Waste Classification Criteria	18	
		J. I.S GIOUIIQWATER CITTERIA	19	

6. DATA QUALITY OBJECTIVES

20

7.	REN	EMEDIATION TECHNOLOGIES 23		
	7.1	Regulatory Overview		
	7.2	Remedial Technologies Review		
	7.3	Preferred Remediation Option		
	7.4	Site Preparation, Licences & Approvals		
		7.4.1 Consent Requirements	27	
		7.4.2 Development Consent & Control Plans	28	
		7.4.5 Other Licence Requirements	20	
8.	REN	MEDIATION WORKS	29	
	8.1	Remediation Strategy 29		
	8.2	Remediation Methodology	29	
		8.2.1 Stage 1 – Preliminaries	29	
		8.2.2 Stage 2 – UST removal and validation	30	
		8.2.3 Stage 3 – Additional Soli & Groundwater A 8.2.4 Stage 4 – Removal of Asbestos Impacted	Fill 31	
		8.2.5 Stage 5 – Handling, Management and Wa	ste Classification of Remaining	
		Fill and Concrete Slabs for Offsite Dispose	33	
		8.2.6 Stage 6 – Site Validation and Classification	n of Materials Suitable for Reuse	
		(SUCH as VIrgin Excavated Natural Materia 827 Stage 7 – Validation Report Preparation	1)	
	8.3	Remediation Hold Points	36	
		8.3.1 Remediation Schedule	36	
	8.4	Remedial Contingencies	37	
9.	SITE	E MANAGEMENT	38	
	9.1	Responsibilities and Contacts 38		
	9.2	Materials Handling and Management	40	
	9.3	Management Measures	41	
	9.4	Amendment of RAP 43		
	9.5	Distribution of RAP	43	
	9.6	.6 Contingency Management 44		
	9.7	Work Health and Safety Plan	46	
	9.8	Unexpected Finds Protocol	47	
10.	VAL	LIDATION SAMPLING AND ANALYSIS QUALIT	Y PLAN 48	
	10.1	Validation Soil Sampling Methodology	48	
	10.2	2 Validation Reporting	51	
11.	CON	NCLUSIONS	52	
12.	STA	ATEMENT OF LIMITATIONS	53	
RE	REFERENCES 54			
AB	BRE	VIATIONS	56	

Schedule of Tables

Table 2-1	Site Identification, Location and Zoning	5
Table 2-2	Regional Setting Information	6
Table 3-1	Summary of STS (2019a and 2019b) Reports	8
Table 3-2	PFAS Decision Tree	10
Table 4-1	Generalised Subsurface Profile	13
Table 4-2	Receptor and Exposure Pathways	14
Table 4-3	Approximate Soil Volumes	16
Table 6-1	Summary of Project Data Quality Objectives	20
Table 7-1	Remedial Technology Review	24
Table 7-2	Remediation Works Category Determination	27
Table 8-1	Indicative Site Remediation Schedule	36
Table 8-2	Remedial Contingencies	37
Table 9-1	Site Management Responsibilities	38
Table 9-2	Materials Handling and Management Requirements	40
Table 9-3	Site Management Measures	42
Table 9-4	Contingency Management	44
Table 9-5	Remedial Hazards	46
Table 9-6	Unexpected Finds Protocol	47
Table 10-1	Validation Sampling Design	48
Table 10-2	Validation Sample Collection and Handling Procedures	49

Appendices

APPENDIX A - FIGURES

- A.1 Site location
- A.2 Sampling Location Plan with Soil Exceedances
- A.3 Sampling Location Plan with Groundwater Exceedances
- A.4 Proposed Remediation Sampling Plan
- A.5 Proposed Applicable Site Criteria

APPENDIX B – PROPOSED DEVELOPMENT PLANS

APPENDIX C - BOREHOLE LOGS & LABORATORY RESULTS (STS, 2019A)

APPENDIX D – REMEDIATION ASSESSMENT CRITERIA

APPENDIX E – REMEDIAL TECHNOLOGY

Executive Summary

JQZ Pty Ltd engaged EI Australia (EI) to conduct a Remediation Action Plan (RAP) for the property located at 11-17 Columbia Lane, Homebush, NSW (herein referred to as 'the site').

This Remediation Action Plan (RAP) outlines the methods and procedures that will be used to remediate the site identified as 11-17 Columbia Lane, Homebush, NSW ('the site') to a condition suitable for residential land use with minimal opportunities for soil access and associated public open space, without the need for ongoing environmental monitoring.

El understands that this assessment was conducted for the purpose of enabling the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

This RAP follows on from a previous environmental assessments completed at the site by STS GeoEnvironmental (STS) entitled:

- STS (2019a). Detailed Site Investigation 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1315 Project No. 21024/1934D-E, dated June 2019; and
- STS (2019b). Geotechnical Investigation 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1962 Project No. 21024/1803D-G, dated April 2019.

At the time of report preparation the site structures had been demolished and the majority of the site was covered by asphalt and/or concrete building slabs.

Site history

According to the site history reported by STS (2019a) the site has been primarily used for commercial, industrial and manufacturing purposes since at least 1936. The structures at the site are noted to have been demolished between 2014 and 2018. The surrounding land changed is noted to be mixed commercial residential.

STS (2019a) also reported that SafeWork NSW's Stored Chemical Information Database (SCID) records indicated there were two underground storage tanks (UST1 and UST2) at the site that possibly stored alcohol and methylated spirits. The records also showed that an above ground storage system, potentially storing Class 1 and Class 2 Dangerous Goods (mineral oils and mineral spirits) existed within building footprint at some point. However, at the time of STS (2019a) investigation most of all structures had been demolished and the AST could not be located, nor did the records indicate where it had been installed.

Subsurface Conditions and Impacted Areas

Previous environmental investigation (STS, 2019a) described the site soil was as a layer of fill (extending to an approximate maximum depth of 2.7 metres below ground level (m BGL)) overlying alluvial soil and/or residual clays with Ashfield shale bedrock. The investigation identified the following contamination at the site:

- Friable asbestos in fill material located within the proposed public parkland area footprint at the east of the site;
- Elevated concentrations of cadmium, copper and PAHs in fill soil layer within the basement footprint and parkland footprint;

- Elevated concentrations of PAH in the natural soil layer at one borehole location, which is located in the south western boundary of the site, outside the basement footprint; and
- Elevated concentrations of heavy metals (nickel and zinc) in one out of the five monitoring wells identified at GW5; and
- Elevated Total Recoverable Hydrocarbons (TRH) and Benzo (a) Pyrene (B(a)P) in downgradient groundwater well GW4; elevated TRH and traces of volatile organic compounds (VOCs) in upgradient groundwater well GW3.

STS (2019a) investigation concluded that the above issues required remediation to make the site suitable for the proposed residential development.

Remediation Strategy

In summary, EI considers that the site can be made suitable for mixed residential-commercial use with limited accessible soils, through the implementation of the works and validation process described in this RAP.

It is envisaged that the remediation works will be implemented in stages, as follows:

- Stage 1 Preliminaries
- Stage 2 UST removal and validation
- Stage 3 Additional Soil & Groundwater Assessment (Data gap closure)
- Stage 4 Removal of Asbestos Impacted Fill
- Stage 5 Handling, Management and Waste Classification of Remaining Fill and Concrete Slabs for Offsite Disposal
- Stage 6 Soil Validation and Classification of Materials Suitable for Reuse (such as Virgin Excavated Natural Material)
- Stage 7 Validation Report Preparation.

Following completion of site remedial and validation assessment works a Site Validation Report will be prepared in accordance with the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

1. Introduction

1.1 Background

JQZ Pty Ltd (the 'client') engaged EI Australia (EI) to prepare this remediation action plan (RAP) to assist the client with a development application for the redevelopment of 11-17 Columbia Lane, Homebush, NSW (the 'site').

As shown in **Figure A.1**, the site which covers a total area of approximately 6,570m², is located approximately 13 km west of the Sydney Central Business District (CBD) and is situated within the Local Government Area of Strathfield Municipal Council (Council), as depicted in the site plan presented as **Figure A.2**.

This RAP follows on from a previous environmental assessments completed at the site by STS GeoEnvironmental (STS) entitled:

- STS (2019a). Detailed Site Investigation 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1315 Project No. 21024/1934D-E, dated June 2019; and
- STS (2019b). Geotechnical Investigation 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1962 Project No. 21024/1803D-G, dated April 2019.

Site characterisation as part of previous environmental investigation (STS, 2019a) identified the following contamination at the site:

- Friable asbestos in fill material located within the proposed public parkland area footprint at the east of the site;
- Asbestos in fill material located within the proposed basement footprint;
- Potential acid sulfate soils (see separate report Ref. Acid Sulfate Soils Management Plan, E24275.E14_Rev1, dated 16 August 2019, completed by El Australia (El, 2019));
- Elevated concentrations of cadmium, copper and PAHs in fill soil layer within the basement footprint and parkland footprint;
- Elevated concentrations of PAH in the natural soil layer at one borehole location, which is located in the south western boundary of the site, outside the basement footprint; and
- Elevated concentrations of heavy metals (nickel and zinc) in one out of the five monitoring wells identified at GW5; and
- Elevated Total Recoverable Hydrocarbons (TRH) and Benzo (a) Pyrene (B(a)P) in downgradient groundwater well GW4; elevated TRH and traces of volatile organic compounds (VOCs) in upgradient groundwater well GW3.

As concluded within the (STS, 2019a) investigation, these issues require remediation to make the site suitable for the proposed residential development.

The purpose of this RAP is to establish a sequential process for remediation and validation works, as required as part of a DA package to Council; to enable the site to be redeveloped into the proposed public parkland and residential land use with minimal opportunities for soil access.

Additionally it was required under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

1.2 Proposed Development

Based on the proposed development plans (Ref. Ref. Mosca Pserras Architects). Project No14028, dated 03 October 2017), the site has been designated for the removal of all existing concrete flooring and the construction of two high rise residential towers over a common four level basement car park. The four level basement is proposed to have a finished floor level (FFL) of RL-6m Australia Height Datum (AHD).

The proposed development will also involve the construction of street extension to the east of the site, which will be constructed within the basement footprint; and 1,012.40m² of public open space covering the majority of the area outside the basement footprint to the east of the site. A 352.90m² deep soil landscaping area is also proposed for the area along the western boundary of the site, which will also serve as a transmission line easement.

Copies of selected development drawings area provided in **Appendix B**.

1.3 Remedial Objective

The main objective of this RAP is to provide a strategy for site remediation, which:

- provide details on the site impact and potential contaminant source;
- provides suitable working zones following demolition to undertake further assessment work of the subsurface;
- minimises the environment and health/safety impacts on site workers and the general public during site demolition and subsequent remediation;
- maximises the protection of workers involved with site remediation;
- minimises potential exposure to contaminants in soil, air and groundwater;
- renders the site suitable for the proposed residential land-use;
- minimises impacts on site users and the local environment following site remediation and
- allows the appointed accredited site auditor to prepare a site audit statement and site audit report that indicates the sites are suitable for residential development. It is envisaged that the site audit statement and report may be staged to allow the overall development to proceed including possible revisions or addendum to this RAP once the further investigations are undertaken.

1.4 Remedial Scope of Works

With the aim of achieving the above objectives while generally complying with the OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, the scope of work included:

- Review and assessment of the available data relevant to the remediation of the site and provided by the previous investigation reports for the site;
- Definition of remediation goals and acceptance criteria;
- Review and assessment of the latest technical literature on remediation technologies relevant to the site and relevant case studies;

- Technical assessment of alternative remediation technologies;
- Evaluation of available remediation options and selection of the most appropriate remedial strategy (or combination of strategies) for the site;
- Provision of information so that remedial works may be carried out in accordance with relevant laws and regulations;
- Provision of guidance on approvals and licences required for the remedial works, under current legislation (e.g. SEPP 55);
- Provision of information to assist the contractor in their preparation of a Work Health and Safety Plan and other site management/planning documents;
- Development of a sampling, analysis and quality strategy for hotspot delineation and postremedial validation.

This RAP also outlines measures for the excavation, stockpiling, management and disposal of spoil, water and sediment controls, as well as a contingency plan to handle any additional contamination that may be identified during the additional investigations and/or site remedial works. The measures provided in this RAP are brief and are designed to accompany site-specific management plans, such as an Asbestos Management Plan (AMP) and a Construction Environment Management Plan (CEMP). These measures do not replace any other requirements for the site as a whole. A complete set of site specific management plans should be developed and adhered to. An outline of management measures to be addressed is provided in **Section 9.3**.

1.5 Regulatory Framework

This RAP was prepared with consideration of various acts, standards and guidelines, and those of significance are presented as per the below:

Legislation

- Contaminated Land Management Act 1997 (CLM Act 1997);
- State Environment Protection Policy 55 Remediation of Land (SEPP 55) under the Environmental Planning and Assessment Act 1997 (EP&A Act 1997);
- Strathfield Development Control Plan 2012; and
- Work Health and Safety Act 2011 (WHS Act 2011) and associated Regulations and Codes of Practice.

Guidelines

- ANZAST (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- ASSMAC (1998) Acid Sulfate Soils Assessment Guidelines;
- CIRIA (2007), Assessing Risks posed by Hazardous ground gasses to buildings. Construction Industry Research and Information Association CIRIA C665
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;

- DOP (2011) The Assessment Guideline Multi-Level Risk Assessment (Ground Gas);
- EPA (1995) Sampling Design Guidelines;
- EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases;
- EPA (2014) Waste Classification Guidelines (Part 1:Classifying Waste and Part 4: Acid Sulfate Soils);
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditors Scheme (3rd Scheme);
- HEPA, 2018 The PFAS National Environmental Management Plan;
- NEPM (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPM (2013) Schedule B(2) Guideline on Site Characterisation;
- NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites; and
- WorkCover (2014) Managing Asbestos In or On Soil.

1.6 Deviation from This RAP

While it may be possible to vary the sequence and/or details of the actual site remediation and validation works to meet site constraints, a qualified Environmental Scientist performing the roles of Environmental Management Coordinator and Remediation Supervisor will be appointed to the project to ensure that:

- Critical stages of the site remediation/validation process (including, but not limited to, proper site induction of site personnel in relation to contamination hazards and environmental management issues, marking of remediation areas, inspection of environmental monitoring systems, implementation of specified control measures and required data gap closure and validation sampling), are appropriately supervised, implemented and documented, with the relevant data collected for environmental reporting purposes; and
- Any deviations from the works specified in this RAP are properly documented and approved, as required under the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

Performing remedial works without the presence of a qualified environmental engineer/scientist when necessary may lead to project delays and extra costs due to additional environmental investigation requirements imposed by a Qualified Independent Consultant or the appointed Site Auditor, to confirm the environmental status of the site.

In worst case scenarios, waste materials removed from the site without proper characterisation and/or waste classification assessment, may lead to regulatory action and potential penalties, as described under the *Waste Regulation 2014*, the *Protection of the Environment Operations Act 1997* and the *Contaminated Land Management Act 1997*.

2. Site Description

2.1 Property Identification, Location and Physical Setting

Table 2-1 Site Identification, Location and Zoning

Attribute	Description
Street Address	11-17 Columbia Lane, Homebush, NSW
Location Description	Approx. 13 km west of Sydney CBD, bound by: North: Nipper Street and mixed used commercial and residential buildings. East: Kennards Warehouse storage facility followed by railway corridor. South: Powells Creek followed by Strathfield STS substation and railway corridor. West: Powells Creek followed by land used for commercial storage purposes and residential buildings.
Site coordinates using GDA94-MGA56 coordinate system:	Northeast corner of site: Easting: 323268.015, Northing: 6251035.35 (Source: <u>https://maps.six.nsw.gov.au/</u>)
Site Area	Approximately 6,570 m ²
Site Owner	JQZ Pty Ltd
Lot and Deposited Plan (DP)	Lot 4 and 5 DP 261926
State Survey Marks	Eleven State Survey Marks (SSM) were situated in close proximity (<150m) to the site. The SSM located within 50m of the site have been listed below:
	SS114415: 85m to the north of the site at the corner of Columbia Lane and Parramatta Road; and
	PM14420: 100m to the north of the site at the corner of Parramatta Road and George Street.
	(Source: https://maps.six.nsw.gov.au/)
Local Government Authority	Strathfield Municipal Council
Parish	Concord
County	Cumberland
Current Zoning	R4 – High Density Residential (Strathfield Local Environment Plan, 2012)
Recent Land Uses	History review indicates the site has been primarily used for commercial and manufacturing purposes since at least 1936. The structures at the site are noted to have been demolished between 2014 and 2018 (STS, 2019a).

2.2 Surrounding Land Use

The site is situated within an area of mixed land uses. As outlined in **Section 2.1**, the most sensitive land use down and cross gradient from the site includes residential buildings to the north and west, and Powells Creek to the west of the site.

2.3 Regional Setting

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

 Table 2-2
 Regional Setting Information

Attribute	Description
Site topography and drainage	An irregular shaped land parcel covering approximately 6,507 m ² , the site topography was generally flat, but gently undulating with a downward slope towards the south. Site drainage is inferred to be consistent with the general slope of the site, stormwater is assumed to flow south via drainage systems discharging to various stormwater easements and the municipal stormwater system.
Regional Geology	With reference to 1:100 000 scale Geological Series Sheet 9130 (Sydney) 1983; the site is likely to be predominantly underlain by black to dark grey shale and laminite (Rwa).
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies the <i>Blacktown (bt)</i> - <i>Erosional Landscape</i> at the north eastern half of the site and <i>disturbed terrain (xx)</i> <i>Erosional Landscape</i> in the south western half of the site. Development in the area (residential and commercial) has likely modified the soil landscape. However, typically the soil landscape comprises of gently undulating rises on Wianamatta Group shales and Hawkesbury shale and level plain to hummocky terrain, extensively disturbed by human activity.
Acid Sulfate Soil Risk	With reference to the 1:25 000 scale Prospect Parramatta Acid Sulfate Soil Risk Map – Edition 2 (Ref. Murphy, 1997), in conjunction with the Guidelines for the Use of Acid Sulfate Soil Risk Maps (Naylor et al., 1998), the subject land lies within the map class description of No Known Occurrence. In such cases, land management activities are not likely to be affected by acid sulfate soil materials. The Strathfield Municipal Council Local Environmental Plan 2012 Acid Sulfate Soils Map (ASS_004) shows the site is within an area mapped as Class 5 Acid Sulfate Soils (ASS). Council consent is therefore required prior to commencing any works by which the water table is likely to be lowered beyond 1 mAHD on adjacent class 1, 2, 3 or 4 land. The basement is proposed to have a finished floor level (FFL) of RL -6.0m Australian Height Datum (AHD).Taking into account the aforementioned design information and findings presented in previous investigations (STS, 2019a) where ASS were outlined as a potential concern;, the need for further Acid Sulphate Soil management was therefore considered warranted, and an ASS Management Plan was prepared separately in conjunction with this investigation.
Site Filling	Based on observations during previous investigations carried out by STS (2019A); the average fill depth across the site is approx. 1.5 metre below ground level (mBGL) and at a maximum fill depth of approximately 2.7mBGL. The fill is comprised of gravelly silty clay and gravelly silty sand. The maximum fill depth was found to be 2.7 mBGL (at BH14).
Typical Soil Profile	 Concrete slab- thickness of approx. 0.2m overlaying; Fill - Gravelly clayey sand, fine grained, light grey, with gravel, dry, no odours (varying thickness 0.2 - 2.7 m) overlying; Fill - Silty sandy clay, brown, medium to high plasticity, with traces of gravel, moist, no odours (varying thickness 0.3 - 0.8 m) overlying; Natural - Silty clay, medium plasticity, light grey with yellow brown and occasional red brown, moist, no odours (varying thickness) overlying; Bedrock- Shale, dark grey with some light grey, clay seams, wet, no odour.

Attribute	Description
Depth to Groundwater	Based on this Detailed Site Investigation (STS, 2019a) the groundwater is expected to be encountered at depth ranging between 0.8mBGL to 4.5mBGL.
Nearest Surface Water Feature	Powells Creek <50 to the West and South of the site.
Groundwater Flow Direction	Groundwater has been inferred to flow north west toward Powells Creek.
Groundwater Salinity	Based on GME data presented in STS (2019A) (Electrical Conductivity: 1,040- 18,612µS/cm) groundwater is considered to be fresh to brackish to saline in terms of water salinity.

2.4 Groundwater Bore Records and Groundwater Use

An online search of registered groundwater bores was conducted by EI on 01 July 2019 through the NSW Office of Water (Ref. <u>https://realtimedata.waternsw.com.au/water.stm</u>). There were no registered bores within a 500m radius of the site. The nearest registered bore is at distance greater than 1km NW of the site. As the registered groundwater bore is located out of the 1 km radius, it is not considered a receptor of potential contamination deriving from the site.

3. Site Characterisation

3.1 Available documents

This investigation follows on from previous investigations completed at the site, including:

- STS (2019a). Detailed Site Investigation 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1315 Project No. 21024/1934D-E, dated June 2019; and
- STS (2019b). Geotechnical Investigation 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1962 Project No. 21024/1803D-G, dated April 2019.

The findings of these reports are summarised in **Table 3-1** below; and the analytical results from STS (2019a) are attached in **Appendix C.**

Assessment Details	Project Task Findings
STS, 2019a	
Objectives	 to evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources; to investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants of concern; and make recommendations for the appropriate management of any contaminated soils and/or groundwater.
Scope of Works	 a review of relevant hydrogeological and soil landscape maps for the project area; detailed site walkover inspection; construction of 27 borehole and 5 groundwater monitoring wells to depths between 6mBGL and 13.2mBGL; multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the five groundwater monitoring bores; laboratory analysis of selected soil samples and for all groundwater samples for relevant analytical parameters as determined from the site history survey and field observation; laboratory analysis of selected soil samples for the purposes of acid sulfate soils (ASS) assessment; and data interpretation and reporting.
Key Findings	 Historical information reviewed indicated the land has been utilised primarily for commercial and manufacturing purposes since at least 1936, until its demolition between 2014 and 2018. Thus, the potential contaminating activities identified included; historic site filling and pesticide use, weathering of former building structures, historic onsite chemical storage and commercial use, and historic offsite manufacturing and commercial purposes. SafeWork NSW records indicated that two underground storage tanks (UST1 and UST2) with a volume of 1,000 gallons (approx. 4,500 litres) each were at the site. These tanks could have potentially stored Class 2 Dangerous Goods, including alcohol and methylated spirits.

Table 3-1 Summary of STS (2019a and 2019b) Reports

Assessment Details	Project Task Findings
	The records also indicated that an above ground storage system with a volume of 1,500 gallons (approx. 6,800litres), potentially storing Class 1 and Class 2 Dangerous Goods (mineral oils and mineral spirits) existed within building footprint. However, at the time of investigation most of all structures had been demolished and the AST could not be located, nor did the records indicate where it had been installed.
	 Land uses on surrounding properties were initially manufacturing and commercial uses to the north and east, with the rail corridor and utilities to the south, until between 2014 and 2018, when the commercial properties to the north were replaced with high-density residential in the form of apartment complexes. To the west, the primary land use was low-density residential until around 2003, at which time the area was redeveloped for medium density, followed by high-density around 2014.
	 At the time of the investigation, it was noted that the area were UST2 was located appeared to have been backfilled; inferring the tank had been decommissioned and removed from the site. However, no formal documentation outlining the decommissioning and removal of UST1 or UST2 had been received, and so as a conservative approach it was assumed both tanks remain at the site.
	 Soil sample results were generally within the adopted the adopted human health and ecological soil criteria, with the exception of:
	 asbestos (friable and non-friable) in fill material at borehole BH8;
	 PAHs (carcinogenic PAHs and/or B(a)p) in fill layer at boreholes BH2, BH4, BH5, BH7, BH8, BH13, BH16, BH17, BH22 BH23, and BH26;
	 Cadmium and/or copper in fill material at boreholes BH2, BH8, BH16, and BH19; and
	 PAHs (carcinogenic PAHs and/or B(α)p) in the natural soil layer at borehole BH1.
	 Soil sample results for ASS assessment indicated there were present at the site.
	 Groundwater samples results were generally within the adopted water quality guidelines and drinking water criteria, with the exception of:
	 TRH and traces of VOCs in groundwater well GW3;
	 TRH and B(α)p in groundwater well GW4; and
	 Heavy metals (nickel and zinc) in monitoring well GW5;
	The soil and groundwater exceeding concentrations of the analytes in some of the soil and groundwater samples were considered to present an unacceptable risk to human health and or ecological receptors for the proposed development and will require a strategy of remediation and/or management to be implemented to mitigate these risks.
Conclusion & Recommendations	STS considered that the contamination identified can be further evaluated and remediated where required to render the site suitable for the proposed land use, provided recommendations detailed below are implemented:
	 Preparation and implementation of a Remedial Action Plan (RAP) to address the identified soil and groundwater impacts;
	 Preparation and implementation of a site specific Acid Sulfate Soils Management Plan; and
	 Submission of a notification to the NSW EPA outlining the soil and groundwater patificable impacts identified at the site of some section.
STS. 2019b	groundwater notinable impacts identified at the site as soon as practicable.
Objectives	To assess the subsurface conditions over the site and provide

Assessment Details	Project Task Findings
	recommendations regarding the appropriate foundation system for the site including design parameters.
Key Findings &	 Soils on the site consist of low permeability silty clays;
Recommendations	 Groundwater was encountered at depths ranging 2.2 – 4.7mBGL; and
	 Exposure classification for the onsite soils is non-aggressive for steel and mildly aggressive for concrete

3.2 Additional Documents

During this investigation, independent research into Council documents was completed, and identified a WSP Preliminary Site Investigation and Geotechnical Investigation completed in March 2011 (WSP, 2011). The report available online, covered the lands identified as 2-20 Parramatta Road and 11-13 Columbia Lane, Homebush NSW. The report provided further details on the specific site uses of the site and it indicated groundwater within the area that was investigation was between 2.57mAHD and 4.24mAHD. The information provided in the report was useful as an additional line of evidence to support the information outlined by the investigation completed by STS (2019a); however, it was limiting in the fact that the appendices were not available and thus the exact location of groundwater wells and other details could not be confirmed.

3.3 PFAS Assessment

EPA (2017) requires that Per- and poly-fluoroalkyl substances (PFAS) is considered in assessing contamination. EI use the following decision tree (**Table 3-2**) based on EnRisk (2016) for prioritising the potential for PFAS to be present on site and whether PFAS sampling of soil and water is required.

Preliminary Screening	Probability ³	Justification
Did fire training occur on-site?	L	Historical records presented in past investigations (STS, 2019a) indicate the site was used for commercial and industrial purposes such as frozen food and clothing wholesaler and commercial mower business,
Is an airport or fire station up gradient of or adjacent to the site? ¹	L	No fire station is identified within close vicinity of the site.
Have "fuel" fires ever occurred on-site? e.g. ignition of fuel (solvent, petrol, diesel, kerosene) tanks?	L	Site history (Section 3.1) indicates the activities carried out at the site could have potentially involved general chemical storage, but given the size of the land and the multiple businesses that would of operated at one time, indicates that the likelihood of large volumes of petroleum products storage, and mass production of paints, polishes or adhesives is low.

Table 3-2 PFAS Decision Tree

Preliminary Screening	Probability ³	Justification
Have PFAS been used in manufacturing or stored on-site ? ²	L	Site history (Section 3.3) indicates trades such as furniture restoration, others operated on the site over decades. However, given the small area and the multiple businesses that operated on the site at any one time, the area for businesses to operate within was limited and thus the likelihood of mass use of PFAS containing products is low.

Note 1 Notes:

Note 2 L = Low, M = Medium, H = High.

Note 3 1. Runoff from fire training areas may impact surface water, sediment and groundwater.

Note 5 3. If medium or high probability is applicable to any of the preliminary screening questions, the site analytical suite will be optimised to include preliminary sampling and testing for PFAS in soil (ASLP Testing) and water.

3.4 Existing Site Contamination

Based on the findings of previous investigation completed by STS (2019a), the following sources of contamination were identified, and were considered relevant to the RAP.

3.4.1 in-situ USTs

WorkCover records indicate that two 1,000-gallon USTs were installed to store Class 2 Dangerous Goods. During their 2019 investigation, STS (2019a) indicated the possible location of the tanks (Ref. **Figure A.2**) and provided a wide range of possible Class 2 Dangeorus Good, as defined by WorkCover NSW; the tanks could have stored. However, further inspection of the documents by EI revealed that the liquids stored in the UST most likely included alcohol and possibly methylated spirits. The tanks are noted as still remaining onsite as no documentation regarding decommissioning has not been included in past investigations nor has it been provided by the landowner.

3.4.2 Previous Commercial Activities

Historical review of land titles and aerials dating back to 1930 indicated the site was used for commercial, industrial and manufacturing purposes since at least 1936 until demolition of structures began i.e. circa 2014 – 2018 (STS, 2019a). Whilst the DSI did not specify what activities were carried out at the site, independent research completed by EI has indicated that the operations carried out at the land included the possible onsite use and storage of window cleaners, detergents, floor treatments, methylated spirits, degreasers and paint strippers; mechanical seal manufacturing and commercial mower business (WSP, 2011). These various activities in conjunction with the historically imported fill for site levelling activities and the demolition of previous structures (STS, 2019a), were considered a potential source of asbestos, heavy metal (HM) contaminants (being cadmium, copper) and polycyclic aromatic hydrocarbons (PAH) in the site soils.

Note 4 2. PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (<u>https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas</u>)

3.4.3 Soil Vapour

The groundwater analytical data indicated that the individual VOC concentrations for all wells were below the laboratory PQL, total VOCs concentration for one of the upgradient wells (GW3) was detected at a value higher than the PQL. This assessment did not define the source of the VOC which may include the UST tanks. Given the presence of low VOC concentrations in the groundwater, soil gas sampling programme was recommended by STS (2019A) to determine the actual risk of ground gas to the future users of the site. However, EI recommends for further groundwater sampling should be first undertaken to assess whether or not soil vapour is an issue for the site.

3.4.4 Groundwater

The groundwater analytical data indicated that the samples from the five monitoring wells that were installed during the DSI were generally within the adopted water quality guidelines and drinking water criteria, with the exception of:

- TRH and traces of VOCs in upgradient groundwater well GW3;
- TRH and B(α)P in downgradient groundwater well GW4; and
- Heavy metals (nickel and zinc) in upgradient groundwater well GW5;

This assessment did not define the source of the exceeding analytes which may include:

- The in-situ UST tanks; and
- Residual impacts from surrounding land uses to the east of the site, which are inferred to be that of commercial and industrial natures;

An additional groundwater assessment is recommended to determine the actual risk of ground water to the future users of the site.

3.5 Potential Contaminants of Concern

Based on the findings reported in STS (2019A) DSI, the chemicals of concern (COC) for site remediation, validation and data gap closure are as follows:

- **Soil** heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds *benzene, toluene, ethyl-benzene* and *xylenes* (BTEX), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), and asbestos.
- **Groundwater** HM, TRH, BTEX, PAH and volatile organic compounds (VOC), including chlorinated VOC and Phenols.

4. Conceptual Site Model

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

The CSM takes into account the change in land use from commercial/industrial to residential/recreational, as outlined in **Section 1.2** and presented in the development plans attached under **Appendix B**. The CSM also takes into account the following:

- The development comprises of a four level basement construction on 75% of the site. This will entail the removal of all fill and natural soil within the basement footprint.
- The deep soil areas (i.e. retained soil) will be turned into landscaping and recreational areas.

4.1 Subsurface Conditions

Current site soil was described as a layer of fill overlying alluvial soil and residual clays with Ashfield shale bedrock. Fill across the site was generally found to be 0.2 - 2.7m thick, with greater lenses of filling observed in the west and within the UST area. Shale bedrock was encountered at depths ranging from 4.0 to 6.6 mBGL.

The general site geology encountered during the previous investigations (STS, 2019a) is described as gravelly clayey sand and silty sandy clay fill overlying residual silty clays, sandy silty clays, gravelly silty clays overlying shale bedrock. The generalised subsurface profile of the site is summarised in **Table 3-2** below.

Layer	Description	Average Approximate Depth to Top & Bottom of Layer (mBGL)	
		Тор	Bottom
Asphalt/Concrete	-	0.0	0.2
Fill	Gravelly clayey sand, fine grained, light grey, with gravel, dry.	0.2	1.5
	Silty sandy clay, brown, medium to high plasticity, with traces of gravel, moist.	-	
Natural	Silty clay, medium plasticity, light grey with yellow brown and occasional red brown, moist.	1.5	5.5
	Silty sandy clay, medium plasticity, light grey with yellow mottled, fine grained sand, moist.	-	
	Gravelly silty clay, medium to high plasticity, orange and red with mottled grey, moist.	-	
Bedrock	Shale, weathered, dark grey, dry to moist, no odour.	5.5	13+

Table 4-1 Generalised Subsurface Profile

Note 1 Notes:

- Note 2 *Approximate depth to bottom of layer shown as mBGL.
- Note 3 + Depth to termination of deepest borehole.
- Note 4 Refer to borehole logs in Appendix C for specific information at individual test bore locations.

4.2 Contamination Pathways

The primary sources of contamination identified for the site were defined using the findings of previous investigations (**Section 3**) and an updated likelihood of exposure was derived for each of the source – receptor pathways applicable to the remedial works, as presented in **Table 4-2**.

Table 4-2	Cable 4-2 Receptor and Exposure Pathways			
Media	COC	Exposure Pathway	Potential Receptor	Likelihood of Exposure
Fill within ecological / landscaping areas	Pesticides, Heavy Metals, TRH, BTEX, PAHs, Phenols, OCPs/OPPs, PCBs, VOCs and Asbestos.	Bioaccumulation Sediment migration Dermal contact Ingestion Inhalation Vapour intrusion	Ecological communities Future site users	Elevated concentrations of heavy metals were identified and a site-specific ecological assessment of all retained fill will be required to confirm suitability of the material for use. Asbestos was also identified in one of the boreholes located within the landscaping area to the north east of the site.
Material surrounding in-situ USTs	Volatile hydrocarbons (white spirits and methylated spirits) and possible components in Fill as above.	Dermal contact Ingestion Inhalation Vapour intrusion	Construction and Maintenance Workers Groundwater Future users of basement (if residual contamination is identified at end use)	Exposure potential considered moderate based on the contaminant concentrations reported. Validation sampling of volatile concentrations should confirm no residual migration to soil vapour exists and should significant impacts to soil be identified, further groundwater characterisation may be required.
Groundwater	Heavy Metals, TRH, BTEX, PAHs, Phenols, and VOCs	Vapour intrusion Offsite migration to Powells Creek Inhalation Dermal Contact Ingestion	Users of basement Offsite residents and receiving waterbodies	Exposure potential considered to be low to medium based on contaminant concentrations identified however should significant impacts to soil be revealed; further assessment may be required.
Vapour	Methylated & White Spirits plus possible other VOCs	Inhalation	Future site occupants Construction and Maintenance Workers Offsite residents	Exposure potential considered to be low based on the minor concentrations of total VOCs identified for the site. The exposure pathway to off-site residents, by migrating contamination under buildings, considered unlikely.

4.3 Data Gaps

Data gaps or uncertainties with the current information are summarised as follows:

- The exact locations of the in-situ USTs and whether they still remain at the site;
- The quality of material surrounding the in-situ USTs;
- The condition of soils beneath the concrete slabs across the site;
- Lateral extent of friable asbestos impact reported in the surficial fill at BH8_0.2m, BH9_0.2m and BH12_0.5m;
- Lateral extent of carcinogenic PAH impact reported in the natural layer at BH1;
- The potential for Acid Sulfate Soils to be encountered along the western and southern boundaries as indicated in EI (2019) ASSMP;
- The quality of the groundwater post removal of the USTs; and
- The classification of fill and soil for waste management according to NSW EPA (2014) Waste Management Guidelines.

The preliminary risk characterisation could be modified with further investigation but as noted above some uncertainties may remain.

4.4 Extend of Remediation Required

4.4.1 Remediation Areas

Based on all existing site characterisation data the areas of the site requiring remediation are illustrated in **Figure A.4** and outlined as follows:

Entire Site – including landscaped areas:

- Former UST The identified USTs in the north east quadrant of the site, will require, appropriate offsite removal and destruction in accordance with NSW WorkCover regulations and *Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation* (NSW, 2008 & 2014), with supply of disposal documentation. The surrounding soils in the remaining tank pit will require validation in accordance with the adopted Remediation Acceptance Criteria (criteria);
- Asbestos The presence and extent of any asbestos contamination in surface fill materials. After the removal of all hardstand flooring, a qualified environmental scientist/engineer will be required to do a walkover to inspect the presence of any historically buried asbestos on the site.

Due to the identification of friable asbestos at three out of the 24 sampling locations completed by STS (2019a), it is possible that friable asbestos contamination is not widely distributed across the site and may be localised. An unexpected finds protocol will outline the procedure for actioning should supplementary visible FCS asbestos contamination be identified during the walkover following the removal of the hardstand floor;

 Residual Impacted Fill – the waste classification, excavation and offsite disposal of remaining fill, which has been shown (based on the existing data set) to be impacted with PAHs. Natural soils will require validation in accordance with the adopted remediation assessment criteria;

 Groundwater – Groundwater assessment should be conducted post removal of site wide fill and USTs. Groundwater will require validation in accordance with the adopted remediation assessment criteria.

Setback Areas – paved areas:

Impacted Natural Material – The presence and extent of any PAH contamination in natural material. Due to the identification of PAH at only one sampling location (BH1), it is possible that PAH contamination is not widely distributed across the site and may be localised. Further delineation of PAH contamination within the vicinity of borehole BH1 is required. Validation of residual natural material within the vicinity of BH1 will require validation in accordance with the adopted remediation assessment criteria.

4.5 Approximate Soil Volumes

The excavation and offsite disposal remedial option should ensure no sources of soil contamination remain that would trigger the requirement for ongoing environmental management and monitoring. As shown in **Table 4-3** it is estimated that a total approximate insitu volume of 70,264 m³ of material is to be excavated for the remedial works, including 7,807 m³ of fill and 61,091 m³ of natural material (i.e. material meeting the NSW EPA Virgin Excavated Natural Material (VENM) classification).

Further in-situ characterisation of fill material is required to adequately classify the soils to be removed as waste, and may assist by informing the segregation of asbestos-impacted materials.

Natural material which is free of Acid Sulfate Soils (ASS) may be reused onsite in the deep soil areas where backfilling for levelling purposes would be required.

Material to be removed from the site	Approximate In-	Excavation Area – Approximate Dimensions		
	Situ Volume [•] (m [*]) Area (m ²)		Average Depth ² (m)	
Hardstand pavement	-	Unknown	0.1	
Fill material in landscaping areas ¹	1,365.3	1,365.3	1.0	
Fill material excluding landscaping areas ¹	7,807.05	5,204.70	1.5	
Natural soil ^{4,5}	61,091	5,204.70	12	
Total Estimated Volume of material	70,264	-	-	

Table 4-3 Approximate Soil Volumes

Notes:

¹ Thickness of fill in calculation does not include the thickness of the hardstand pavement.

² The material thickness relies upon the borehole logs presented in STS (2019a) report. These are attached in **Appendix C**.

³ El notes these volumes calculated are approximate only and are based on currently available information. El note that exact volumes may differ from those presented above.

⁴ Thickness of natural material calculated by subtracting the average depth of fill from the difference between the ground level and basement RLs indicated on the proposed plans (Ref. Mosca Pserras Architects. Project No14028, dated 03 October 2017).

⁵ EI notes the calculated volume for natural material, assumes material will be reused onsite in the landscaping areas where backfilling for levelling purposes will be required.

5. Remediation Goals

The main objective of this RAP is to make the site suitable for high density residential use. Remediation goals were developed in line with relevant legislation (NSW EPA, SEPP 55 guidelines and Council's contaminated land policy), and include:

- Detailing the methods and procedures to be implemented for site remediation, to guide the earthworks and assist the client in meeting the required objectives of the works;
- Meeting the conditions of the planning consent and to render the site suitable for the proposed land use(s);
- Demonstrating that the proposed remediation strategy for the site is environmentally justifiable practical and technically feasible;
- Define site acceptance criteria, to be applied as a benchmark to assess the suitability of material to remain at the end use of the site;
- Mitigating possible off-site migration of contaminants (including migration in existing utilities such as the sewer, stormwater and other subsurface pipes or service trenches);
- Consideration of the principles of ecologically sustainable development in line with Section 9 of the Contaminated Land Management Act 1997;
- Minimising waste generation under the Waste Avoidance and Resource Recovery Act 2001;
- Remediate all site contamination so there are no unacceptable risks to off-site receptors; and
- Demonstrating that the plans for site management of remediation work consider work health and safety, environmental management, community relations and site contingencies.

5.1 Remediation Criteria

5.1.1 Soil Remediation (Validation) Criteria

As the proposed site development will comprise high density residential use with limited access to soils and retained deep soil areas for communal use, the following soil remediation criteria, which are based on NEPM (2013) *Schedule B1 Guideline on Investigation Levels for Soil and Groundwater*, will be adopted as clean up levels for the applicable areas of the site.

Basement Footprint

- NEPM 2013 Residential B Health-based Investigation Levels (HIL B) for residential settings with minimal opportunities for soil access (including dwellings with fully and permanently paved yard space such as high-rise buildings and apartments);
 - HIL-B screening values can be applied to soils within the basement footprint as illustrated in Figure A.5.
- NEPM 2013 Soil Health Screening Levels for vapour intrusion (HSLs D) for coarse-textured (sandy) soils in commercial / industrial settings;
 - HSL-D screening values can be applied to soils within the within the basement footprint as illustrated in Figure A.5.; and

 NEPM 2013 Management Limits for TRH fractions for residential, parkland, and public open space - coarse-textured soils.

Landscaped Areas and Paved Set Back Areas

- NEPM 2013 Recreational C Health-based Investigation Levels (HIL C) for Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths;
 - HIL-C screening values can be applied to soils within the landscaped areas and in the paved set back areas as illustrated in **Figure A.5**.
- NEPM 2013 Soil Health Screening Levels for vapour intrusion (HSLs C) for coarse-textured (sandy) soils in commercial / industrial settings;
 - HSL-C screening values can be applied to soils within the landscaped areas and in the paved set back areas as illustrated in Figure A.5.;
- NEPM 2013 Management Limits for TRH fractions for residential, parkland, and public open space - coarse-textured soils; and

For landscaped areas only:

- NEPM (2013), Schedule B1, Ecological Investigation Levels (EIL) urban residential and public open space; and
- NEPM (2013), Schedule B1, Ecological Screening Levels (ESL) urban residential and public open space.

The contaminant threshold values relating to the adopted soil remediation criteria are tabulated in **Appendix D, Table D-1**. Conformance with the soil remediation criteria will be deemed to have been attained when soil validation samples from similar lithology and depth show contaminant concentrations that are below the specified criteria, or, as a minimum, the 95% upper confidence limit (UCL) mean concentration values of each contaminant in the soil remediated area (i.e. across the excavated surface), are below the respective remediation criteria.

5.1.2 Waste Classification Criteria

Prior to being removed from the site, excavated soils must be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines (the 'Waste Guidelines'). Under these guidelines, fill/soils may be classified into the following groups: *General Solid Waste, Restricted Solid Waste* or *Hazardous Waste*, subject to chemical assessment using NATA-registered laboratory methods for total and leachable contaminant levels.

The total contaminant threshold concentrations and leachate thresholds tested using the TCLP methodology for each relevant contaminant parameter will then be interpreted against the respective NSW EPA (2014) thresholds, which are presented in **Appendix D**, **Tables D-2**, **Table D-3** and **D-4**, in order to classify the waste soils. Any soils containing asbestos would also be classified as *Special Waste - Asbestos Waste*. In accordance with the *NSW Waste Regulation 2014*, waste soils must only be disposed to a waste facility that is appropriately licenced to receive the incoming waste. It is therefore recommended that confirmation is obtained from the waste facility prior the materials being removed from the site.

Should the analytical results exceed the SCC2 and/or TCLP2 thresholds, then the materials will be classified as *Hazardous Waste*. In such cases, material stabilisation treatment with EPA approval may be required prior to offsite disposal. Unexpected material may need to be segregated depending on the source of the waste, prior to conducting waste classification assessment. This approach is discussed in more detail under *Contingency Management* in **Section 9.6**.

5.1.3 Groundwater Criteria

- ANZAST (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality – Marine Waters, as the site is located approx. 1.0km from Homebush Bay (the receiving water body), which is considered to be tidally influenced and therefore classed as a marine water ecosystem;
- NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy for Recreational settings (the lowest of the Health Guideline x10 or the Aesthetic Guideline is chosen as the assessment criteria), were applied in light of the potential for industrial and recreational use of groundwater down-hydraulic gradient of the site;
- NEPM 2013 Groundwater Health Screening Levels for vapour intrusion (HSLs A&B) for coarse-textured (sandy) soils on low to high density residential settings;
 - These values should be applied to the potential offsite migration of groundwater concentrations.

The contaminant threshold values relating to the adopted groundwater remediation criteria are tabulated in **Appendix D**, **Table D-5**. Conformance with the groundwater remediation criteria will be deemed to have been attained when additional groundwater samples show contaminant concentrations that are below the respective remediation criteria.

6. Data Quality Objectives

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme* (3rd Edition), data quality objectives (DQO) will be defined by the EI team to determine the appropriate level of data quality needed for the specific requirements of the project. The DQO process to be applied for the proposed remediation is documented in **Table 6-1**.

Table 6-1	Summary	of Pro	ject Data	Quality	Objectives

DQO Steps	Details
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Historically the site has been used for commercial and manufacturing purposes since at least 1936, until its demolition between 2014 and 2018. The site uses have entailed onsite chemical storage in USTs and ASTs. A conceptual site model is presented in Section 3 . The site is required to be rendered suitable for the proposed residential development with associated public open space. Previous site investigations indicate the presence of possibly two UST tanks; asbestos, heavy metal (HM) contaminants (being cadmium, copper) and polycyclic aromatic hydrocarbons (PAH) in the site soils; and TRH, heavy metal (HM) contaminants (being nickel and zinc) and traces of VOCs in the groundwater.
 2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them 	 Based on the objectives outlined in Section 1.3, the following decisions are identified: Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Will site soils and groundwater require further remediation and/or special management before the site can be used for residential purposes?
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	Inputs to the decision making process include: The proposed end land use outlined in Section 1.2 ; Previous investigations performed at the site, summarised in Section 3 ; Additional soil, groundwater and/or soil vapour investigation sampling, and laboratory analytical results; Soil validation sampling of remedial excavation surfaces including, the UST areas and identified contamination points; Sampling from stockpiled soil material for waste classification assessment; Laboratory analytical results of soil validation samples; and Assessment of analytical results in relation to the remediation criteria. At the end of the validation, a decision must be made regarding whether the environmental conditions are suitable for the

DQO Steps	Details
	proposed redevelopment, or if additional investigation or remedial works are required to make the site suitable.
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to	Lateral – The cadastral site boundaries. Vertical – From existing ground surface, underlying fill and natural soil horizons, to the base of contaminated soil and/or bulk excavation level (BEL), and underlying water-bearing zones.
support decision	Temporal – Results are valid on the day of data and sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.
5. Develop the Analytic Approach (Develop a decision rule)	Laboratory analytical results will be accepted if: All contracted laboratories are accredited by NATA for the analyses undertaken;
To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	All detection limits fall below the remediation criteria; RPDs for duplicate samples are within accepted limits; and Laboratory QA/QC protocols and results comply with NEPM requirements.
	Further decisions are also required following any additional assessment. This may require updating of the RAP to include groundwater remediation or management.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on	Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This includes the following points to quantify tolerable limits:
decision errors, which are used to establish	The null hypothesis for the remediation of soils is that the:
performance goals for limiting uncertainties in the data	95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed the adopted remediation criteria across the site;
	Sampling on a 25m ² grid will allow detection of a circular hotspot with a nominal diameter of 6m with 95% certainty. The acceptance of the site as validated will be based on the probability that:
	The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and
	The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and
	No single results exceeds the remediation acceptance criteria by 250% or more; and
	Soil concentrations for chemicals of concern that are below investigation/validation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s).
7. Develop the Detailed Plan for Obtaining Data	Written instructions will be issued to guide field personnel in the required fieldwork activities.
(Optimise the design for obtaining data) Identify the most resource-effective sampling and	Soil remedial excavation is to be performed as per Section 7 . Soil validation sampling is to be completed as per the methodology prescribed in Section 9 .
analysis design for general data that are expected to	Groundwater and soil vapour investigations will adopt the methodologies outlined in this RAP.

DQO Steps	Details
satisfy the DQOs	Validation sampling procedures that would be implemented to optimise data collection for achieving the DQOs.
	Review of the results will be undertaken to determine if further excavation and additional sampling is warranted. Additional investigations would be considered to be warranted where soil, groundwater and/or vapour concentrations are found to exceed remediation criteria endorsed by the NSW EPA, relevant to the proposed land use(s).

7. Remediation Technologies

7.1 Regulatory Overview

Section 16 in Volume 1 of the NEPC (2013) *National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013* indicates that the preferred hierarchy for site remediation options and/or management is:

- On-site treatment of the contamination so that it is destroyed or the associated risk is reduced to an acceptable level; and
- Off-site treatment of excavated soil, so that the contamination is destroyed or the associated risk is reduced to an acceptable level, after which soil is returned to the site; or, if the above are not practicable:
- Consolidation and isolation of the soil on-site by containment with a properly designed barrier; and
- Removal of contaminated material to an approved site or facility, followed, where necessary, by replacement with appropriate material; or
- Where the assessment indicates remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.

When deciding which option to choose, the sustainability (environmental, economic and social) of each option should be considered, in terms of achieving an appropriate balance between the benefits and effects of undertaking the option.

Other considerations to mitigate groundwater contamination measures, as outlined by the EPA (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, include:

- Notifying of the affected property (under the CLM Act 1997) and the downgradient receptors;
- Containment of the contamination plume;
- Active or passive clean-up of contaminated groundwater (this may include the concept of cleanup to the extent practicable (CUTEP)), which may include ongoing monitoring of groundwater and/or contingency plans and management plans to mitigate risks; and
- Legislative control through restricting groundwater use in and down-gradient of the contaminant plume.

For this site, a number of remediation options were reviewed to examine the suitability of each method, the surrounding properties, geological and hydrogeological limitations and the following considerations:

- Development requirements (residential, with limited access to soils and landscaped areas);
- Prioritisation of works in areas of most concern;
- Ability of remedial method to treat contamination with respect to material and infrastructure limitations;
- Remedial timetable;
- Defensible method to ensure the site is remediated to appropriate levels / validation criteria; and
- Regulatory compliance.

7.2 Remedial Technologies Review

A number of remediation options were reviewed to examine the suitability of each method, with due regard for the surrounding land uses, as well as the geological and hydrogeological limitations.

Brief discussion of the various remediation technology options is provided in **Appendix E**. Each of the available remediation technologies, except ones that are not commonly used in Australia (for instance *in situ* thermal or steam injection), are summarised in terms of their suitability in **Table 7-1** below.

Remediation methodology	Description	Advantages	Disadvantages	Suitability
No Action	'No Action' can be considered if: There is no measurable contamination; Contaminant concentrations are below assessment guidelines; Contaminants are not mobile; or Exposure to contaminated soils is unlikely.	No remediation costs Creates minimal disturbance to the site Retains material on-site	Not applicable to the kind of contamination encountered at the site. Contamination would remain <i>in situ</i> allowing potential vapour intrusion and off-site migration of contamination and impacts on groundwater. Would pose limitations on land use options. Requires an Environmental Management Plan and ongoing monitoring.	Not Suitable - the key objective of the remedial strategy is to make the site suitable for residential use without the need for ongoing monitoring. In addition, the USTs require decommissioning and remediation, and soils located in the areas of the proposed basement require excavation and offsite disposal.
On-site bioremediation (biostimulation)	Excavated soils are thoroughly broken down and aerated, mixed with microorganisms and nutrients, stockpiled and aerated in above ground enclosures.	Cost effective if soils are utilised on-site. Lower disposal costs. Limited requirement to import fill material to site. Retains material on-site.	Significant area of site required to land farm material. Undefined remediation timeframe. Potential for odour problems. Uncertainty of successful results, particularly for the VOCs. Not suitable for asbestos or metal contamination.	Not suitable – asbestos, PAH and heavy metal contamination within the fill are not addressed by this remediation.
In situ treatment	<i>In situ</i> treatment of impacted soils by SVE, steam stripping, ISCO or injection of oxygen releasing	Creates minimal disturbance to the site (no excavation). Cost effective for large scale site	Not applicable to the kind of contamination encountered at the site. Expensive establishment and on-going	Not suitable - this method is designed for widespread hydrocarbon impacted soils. Since the present dataset does

 Table 7-1
 Remedial Technology Review

Remediation methodology	Description	Advantages	Disadvantages	Suitability
	compounds.	remediation projects of light to mid- weight petroleum hydrocarbons. Potential to simultaneously remediate dissolved phase hydrocarbons in site groundwater.	costs. Potential for odour problems. Requires detailed design, pilot trials and management. SVE requires high vacuum pressure over a long period and will not work in saturated conditions.	not provide evidence of widespread contamination, this is not considered to be an economically viable option.
Consolidation and/or capping	Risk minimisation approach where impacted soils are managed on-site by capping the ground surface with a clean, impermeable layer of fill material.	Effectively removes risk to human health by eliminating exposure pathways.	Importance of capping materials. Contamination would remain <i>in situ</i> allowing potential off-site migration of contamination and impacts on groundwater. Would pose limitations on land use options. Requires an Environmental Management Plan and ongoing monitoring.	Not Suitable - an EMP with ongoing monitoring would be required, due to the retention of contaminated materials on the site, and the key objective of the remedial strategy is to make the site suitable for residential use without the need for ongoing monitoring.
Excavation and off- site disposal	Excavate impacted materials. Transport directly to a licensed landfill facility. Re-instate site with imported clean fill material.	Fast – impacted material removed immediately, significantly reducing potential for impact to groundwater. No storage or treatment problems. Reduced vapour/odour issues as impacted materials removed from site. Minimal design and management costs. In line with the proposed development, which includes a 4 level basement that covers 75% of the site.	Transfer of waste to another location (licensed waste facility). High costs associated with the disposal of waste soils / bedrock and importation of clean backfill (in the case that a basement car park is not approved). Requires waste classification prior to disposal, keeping of thorough waste records, waste tracking and reporting. Sustainability issues related with disposal to landfill.	Suitable – for meeting the key project objective to make the site suitable for residential use without the need for ongoing monitoring. This will remove potentially leachable contamination source and prevent vertical migration to the groundwater system. Should soil vapour be an issue for the site, this remediation strategy will allow for the installation of a vapour mitigation membrane and venting layer thus providing added level of

Remediation methodology	Description	Advantages	Disadvantages	Suitability
				protection.
Natural attenuation	Allowing the contaminants to biodegrade naturally following removal of the contamination source.	No remedial excavation of site. Retains materials on site. Sustainable, cost effective remediation method.	Slow process. Potential for contamination to further impact on the groundwater aquifer and nearby environmental receptors. Would require Environmental Management Plan and ongoing monitoring.	Not Suitable - primarily suited to addressing groundwater contamination, which is not identified as being significant. In addition, the approach would not address soil and soil vapour impacts.

7.3 Preferred Remediation Option

Based on the available remedial technologies, the proposed site development (high density residential, with associated four level basement car parking and landscaped areas), the potential risks to human health and the environment, as well as the relative cost effectiveness of feasible remedial techniques, the preferred remedial option for the site is:

- Removal of USTs; followed by
- Complete and thorough offsite disposal to licensed waste facilities of all impacted fill and natural soils up to a depth of maximum 9mBGL. This coincides with the proposed depth of the proposed four level basement. Excavation of bedrock would be undertaken where necessary. All wastes shall be transported to appropriate, EPA-licensed facilities, after formal classification. All excavated (remediation) areas shall be validated by base and wall, soil sampling.
- Site reinstatement with validated, imported (or recovered) excavated natural materials;
- Soil vapour monitoring prior to bulk excavation works; and
- Groundwater monitoring prior and during bulk excavation works.

7.4 Site Preparation, Licences & Approvals

7.4.1 Consent Requirements

In accordance with *SEPP 55 - Remediation of Land*, the category of the remediation works defines whether consent is required prior to the commencement of the works. Under *SEPP 55*, works where there is the potential for significant environmental impact are classed as *Category 1* and require development consent. *Category 2* works pose a low potential for environmental impact and do not therefore require prior consent. The determination for the subject site is outlined in **Table 7-2**.

Table (-2 Remediation Works Catedory Determ	Table 7-2	Remediation	Works	Category	Determination
---	-----------	-------------	-------	----------	---------------

Significant Environment Impact	Yes/No	Category
Designated Development or State Significant Development	No	2
Critical or threatened species habitat	No	2
Have significant impact on threatened species, populations, ecological communities or their habitats	No	2
In area identified environmental significance such as scenic areas, wetlands (see list $^{\ast})$	No	2
Comply with a policy made under the contaminated land planning guidelines by the council.	Yes	2
Is work ancillary to designated development	Yes	2

Notes: * Environmental significance list -coastal protection, conservation or heritage conservation, habitat area, habitat protection area, habitat or wildlife corridor, environment protection, escarpment, escarpment protection or escarpment preservation, floodway, littoral rainforest, nature reserve, scenic area or scenic protection, or wetland.

Based on the above assessment, the remediation works for the site are considered as Category 2 and will not require development consent. Category 2 works do however require notification to the consent authority; therefore, Council should be notified 30 days before commencement of the works. The 30-day limit does not prevent Council intervention after that time for a breach of the *EPA Act 1997* or non-compliance with *SEPP 55*. The notification also serves as the basis for updating Council records on properties in the local government area and must:

- Be in writing;
- Provide contact details for the notice;
- Briefly describe the remediation work;
- Show why the work is considered Category 2 remediation work;
- Specify the property description and street address on which the remediation work is to be carried out;
- Provide a location map; and
- Provide estimates for commencement and completion dates of the work.

Provision of this RAP, as well as an indication of commencement and completion dates of the works in writing, is usually sufficient to meet the requirements of this notification.

7.4.2 Development Consent & Control Plans

All works should be in accordance with the Strathfield Municipal Council DCPs and any development consent issued by Council for the development.

7.4.3 Other Licence Requirements

The appointed site contractor should prepare an appropriate Construction Environmental Management Plan (CEMP), health and safety plans and other plans required by the Council DA and DCPs. Where asbestos removal is required, the contractor must be appropriately licensed to perform such works.

8. Remediation Works

8.1 Remediation Strategy

The preferred remediation strategy involves bulk excavation and disposal of impacted materials, and the monitoring of groundwater and soil vapour.

Following approvals and site establishment, the main site remediation works would include, but not be limited to:

- Stage 1 Preliminaries
- Stage 2 UST removal and validation
- Stage 3 Additional Soil & Groundwater Assessment (Data gap closure)
- Stage 4 Removal of Asbestos Impacted Fill
- Stage 5 Handling, Management and Waste Classification of Remaining Fill and Concrete Slabs for Offsite Disposal
- Stage 6 Soil Validation and Classification of Materials Suitable for Reuse (such as virgin excavated natural material)
- **Stage 7** Validation Report Preparation.

Contingent Action

Should unexpected finds be discovered during the course of the remediation program, or should any phase of the validation identify residual, high level contamination requiring additional remediation, then the procedures described under the Unexpected Finds Protocol (**Section 9.8**) and/or the Validation Plan (**Section 10.1**) will be implemented, until the remediation goals have been achieved and the area is deemed suitable for the intended land use.

8.2 Remediation Methodology

8.2.1 Stage 1 – Preliminaries

Site Preparation

Notice should be given to Council at least 30 days prior to the commencement of remediation works. A list of all required work permits will be obtained from Council and arrangements are to be made to obtain the necessary approvals from the relevant regulatory authorities.

The site itself will be prepared in accordance with the requirements of the Site Management Plan outlined in **Section 9**. The site developer would also need to prepare and implement a Construction Environmental Management Plan (CEMP), Asbestos Management Plan (AMP) and Site Work Health and Safety (WHS) Plan prior to any site works. A framework for CEMP and WHS requirements are outlined in **Section 9**. Establishment of environmental controls, site access, security, fencing, warning signage and preparation of a Health Safety and Environment Plan is required prior to works commencement. A project plan should also be developed to outline engineering design for excavation support (if required), water treatment requirements and design, staging of excavation works, stockpiling, waste stabilisation, waste material loading, traffic management and waste tracking.

As part of the site preparation phase and preliminary tasks a remediation workshop should be conducted with the appointed contractor(s) to further develop any remedial measures, excavation plans and environmental management requirements.

- Staging of the decommissioning and removal of tanks and associated equipment;
- Staging of areas to be excavated;
- Areas designated for waste segregation, screening and storage (stockpiling), amenities, soil and groundwater treatment (if required);
- Truck movements to allow loading to mitigate impacts to surrounding land users and council infrastructure; and
- Proposed environmental mitigation measures.

Site inspection

Following removal of USTs and floor slab/pavement; a site walkover is to be conducted by a qualified and experienced environmental scientist/engineer to assess any visual signs of contamination, supplementary asbestos contamination in surface fill soils, and building waste (potentially containing asbestos) that may have been buried beneath the building slab prior to any further excavation.

8.2.2 Stage 2 – UST removal and validation

Tank decommissioning and removal of the associated infrastructure has not been completed. Based on the site investigation completed by STS (2019A), it is understood that two UST possibly storing any liquid that contains methylated spirits with a flash point of less than 65[°] Celsius; are present at the site. The STS (2019A) assessment indicated the location of the USTs to be within the norther eastern quadrant of the. The area of where the USTs are likely to be located is illustrated in **Figure A.4**.

Prior to any deep excavation, the ASSMP prepared by EI (2019) should be implemented.

UST Decommissioning

Two UST areas have been identified at the site, as discussed in **Section3.2**. UST infrastructure, including UST, anchors, air vent pipes and direct or remote fill points, will require decommissioning and removal as part of the site remediation process.

Residual flammable liquids, and solvent/water mixtures may be present within the tank and product lines. Any liquid waste remaining within site infrastructure should firstly be drained, and classified for disposal purposes as defined in NSW EPA (2014b). The liquid waste should be removed from site by a licensed liquid waste transporter and disposed to a suitably licensed liquid waste facility. The contractor shall provide appropriate documentation for waste disposal.

A SafeWork licensed and experienced tank removal contractor should be engaged to manage the tank and infrastructure removal process, in accordance with Australian Standard for the removal and disposal of underground petroleum storage tanks (AS4976 – 2008), SafeWork guidelines and the *Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2014* (the 'UPSS Regulation'). SafeWork NSW should be notified within 7 days of the removal of UST. Where buried UST are discovered, these will be targeted for decommissioning and offsite destruction in accordance with NSW SafeWork guidelines and the UST Regulation.

The contractor is also to record the condition of the tanks and associated infrastructure, and provide documentary evidence on destruction of the USTs for final validation report.

Remedial Excavations

Following decommissioning and removal, contaminated soils may be found in vicinity of the UST and associated lines. Such materials will require separate management from the remainder of the site, via remedial excavations, followed by waste classification and off-site disposal.

The general procedure for remedial excavation of the UPSS is described below:

- 1 Any infrastructure, residual product and liquid in the excavation area should be removed in accordance with the procedure described above. Localised deep excavations (sumps) may be created within the area to allow perched groundwater to drain to the sumps. The accumulated liquid will be removed by an appropriately licenced liquid waste removal contractor for appropriate disposal and /or recycling, after on-site treatment (if necessary).
- 2 "Chase-out" excavation of walls and base of the area, with regular field screening of soil headspace samples using a calibrated Photo-ionisation Detector (PID). Materials exhibiting unusual odour, staining and / or PID reading > 30 ppm will be stockpiled separately for waste classification. Excavation should not jeopardise the stability of adjoining properties and structures. The open excavation pits should be clearly demarcated with star pickets and tapes.
- 3 "Chase-out" excavation should continue until all walls and base of the excavation are observed to be free of odour and staining and PID reading of headspace sample are less than 30 ppm. Validation samples will be collected for laboratory analysis, from the base and side walls of the final remedial excavations, in accordance with NSW EPA (2014a) *Technical Note: Investigation of Service Station Sites.* Further details are discussed in **Section 10**.
- 4 Spoils from remedial excavations are to be stockpiled separately from other site fill / soils, for *exsitu* waste classification assessment. General management requirements of stockpiles on site are described in **Section 9.2**.
- 5 Stockpiles resulting from remedial excavations will be visually inspected, sampled and analysed for waste classification in accordance with Section 7.5 in Schedule B2 in NEPM (2013) and NSW EPA (2014b) Waste Classification Guidelines:
- 6 Collection of one sample per 25 m³ of stockpiled materials, up to 250 m³. A minimum of three samples is required for any stockpile. For stockpiles > 250 m³ but < 2,500 m³ in size, a statistical analysis approach may be used with the collection of 10 samples.
- 7 Analytical suite for waste classification will include:

8 priority metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); TRH; BTEX; PAH; OCP; OPP; PCB, asbestos, TCLPs (as required) and any additional chemicals of potential concern that may be identified during site remediation.

- 8 Waste classification certificates will be prepared for classified stockpiles, which will be transported and disposed to appropriately licensed waste landfill facilities according to classification. General material handling and management requirements are discussed in **Section 9.2**. Waste disposal documentation will be maintained by the site contractor and provided to the environmental consultant for reporting purposes.
- 9 Validation of voids following remedial excavation of UST and associated contaminated soil should be undertaken according to the validation plan provided in **Section 10**.

8.2.3 Stage 3 – Additional Soil & Groundwater Assessment

Following the removal of the hardstand pavement across the site, to enable appropriate contaminated fill disposal and site characterisation, the following data gap closure investigations, which will address the issues raised in **Section 4.3**; are to be conducted prior to the commencement of remedial works:

Soil Assessment – Public open space and set back areas

Complete four (4) test pits across the proposed public open space area, and four (4) test pits along the setback area as shown in Figure A.4. An upper soil profile sample (or soil extracted immediately beneath the concrete hardstand / pavement) will be collected at each of the eight (8) test pit locations and tested for chemicals of concern including asbestos (NEPM 2013 WADOH Guidelines - quantitative analysis methodology), to assess the condition of the fill layer, and impacts from activities above ground. Further sampling would also be carried out at deeper soil

layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) whilst giving consideration to characterise the subsurface stratigraphy.

Groundwater Assessment – Entire Site

- Construct four (4) groundwater monitoring bores drilled to a maximum depth of 1m below BEL (i.e. 14mbgl) outside the proposed basement area as indicated in Figure A.4. Groundwater monitoring bores will be constructed to standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants on/off-site;
- Complete one round of ground water sampling of existing and newly installed monitoring wells. This should be conducted as follows:
 - Prior to well sampling, wells should be developed until sediment loading within the groundwater is reduced, and purged groundwater is considered stabilised to three consecutive readings for pH, electrical conductivity (EC), dissolved oxygen (DO), temperature and redox (ORP).
 - Conduct a second round of groundwater sampling using micro purge techniques. Assess for priority metals (M-8), TRHs, PAHs and VOCs (extended suite).

Note: Should residual contaminants in groundwater be found at concentrations exceeding the adopted GILs (**Section 4.4**), a risk assessment may be required to determine if groundwater impacts pose unacceptable risks to human health and/or the environment. Following this risk assessment, should groundwater remediation be warranted, an addendum to this RAP shall be completed prior to any further work.

Following the aforementioned additional investigations, the remediation works can be continued.

8.2.4 Stage 4 – Removal of Asbestos Impacted Fill

Asbestos Management Controls

Contaminated fill/soil hotspot removal must be carried out under the supervision of a qualified environmental scientist and in compliance with a site-specific AMP. Fill disturbance for the remediation works must not be commenced therefore, until the relevant control measures are in place, including friable asbestos management controls and associated asbestos fibre monitoring, as specified in the AMP. Air monitoring for asbestos fibres should be conducted as per **Section 9.5** during asbestos remediation works due to the potential for aerial dispersion of asbestos fibres.

Prior to any deep excavation, the ASSMP prepared by EI (2019) should be implemented.

The fill in borehole BH8_0.2m, was identified to contain ACM (non-friable and friable), and boreholes BH9_0.2m and BH12_0.5m as shown in **Figure A.2**, were identified to contain ACM (non-friable) Thus, given the nature of the development which requires deep excavation for basement construction; the following works should be implemented:

- 1 Delineation of fill material with ACM, using the results obtained from additional investigations outlined above (Stage 3).
- 2 Excavation and stockpiling of ACM impacted fill soils located within the basement boundary and the public open space boundary, as shown in **Figure A.4**.

Note: Excavation should not jeopardise the stability of the neighbouring properties and structures.

3 Collection of validation samples in accordance with the sampling plan outlined in **Section 10** within the basement boundary and proposed public open space area to ensure that no asbestos impacted soils remain. Should asbestos impacted soils remain, further excavations are required to remove the impacted soils followed by subsequent validation sampling. This process will be continued until asbestos impacted soils have appropriately been segregated;

- 4 Spoil from remedial excavations are to be stockpiled separately from other site fill / soils, for *ex-situ* waste classification assessment. General management requirements of stockpiles on site are described in **Section 9.2**.
- 5 Stockpiles resulting from remedial excavations will be visually inspected, sampled and analysed for waste classification in accordance with Section 7.5 in Schedule B2 in NEPM (2013) and NSW EPA (2014b) *Waste Classification Guidelines*:
- 6 Collection of one sample per 25 m³ of stockpiled materials, up to 250 m³. A minimum of three samples is required for any stockpile. For stockpiles > 250 m³ but < 2,500 m³ in size, a statistical analysis approach may be used with the collection of 10 samples.
- 7 Analytical suite for waste classification will include:

8 priority metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); TRH; BTEX; PAH; OCP; OPP; PCB and asbestos (presence/absence), TCLPs (as required) and any additional chemicals of potential concern that may be identified during site remediation.

- 8 Waste classification certificates will be prepared for classified stockpiles, which will be transported and disposed to appropriately licensed waste landfill facilities according to classification. General material handling and management requirements are discussed in **Section 9.2**. Waste disposal documentation will be maintained by the site contractor and provided to the environmental consultant for reporting purposes. The classification should include original results from BH8.
- 9 Validation of voids following remedial excavation of BH8 and any other ACM impacted area should be undertaken according to the validation plan provided in **Section 9**.

El recommend over-excavating the fill by approximately 0.1 m into the natural soils to allow for the removal of any residual impacts from the overlying fill at the top of natural material.

Remedial excavations should only be conducted under the supervision of a suitably qualified environmental professional.

Should unexpected finds be discovered during the course of the site remediation programme, then the procedures described under the Contingency Management (**Section 10.4**) and Unexpected Finds Protocol (**Section 10.6**) will be implemented, until the site remediation goals have been achieved and the site is deemed suitable for the intended land use.

8.2.5 Stage 5 – Handling, Management and Waste Classification of Remaining Fill and Concrete Slabs for Offsite Disposal

The following is provided to assist with handling and management of remaining fill for offsite disposal.

Prior to any deep excavation, the ASSMP prepared by EI (2019) should be implemented.

Excavation Considerations

Excavation depths should be in accordance with DA conditions. If further excavation is required, it should not jeopardise the stability of the neighbouring properties and structures.

Off-Site Disposal of Contaminated Soils

Waste classified soils for disposal shall be loaded onto EPA-licensed waste vehicles for transport to the designated landfill facility. It is proposed that in-situ waste classified soils will be excavated and directly loaded onto transport vehicles for disposal to landfill. Waste transport contractors must carry a copy of the relevant Waste Classification Certificate with every transported load. Other important requirements as part of the excavation procedure are as follows:

• Filling soils within the basement footprint and proposed public open space that are not in-situ classified are to be excavated and stockpiled for ex-situ waste classification assessment;

- Excavation of the fill soils is to be conducted to the full depth of filling (visually) over the entire basement footprint and public open space area, with regular headspace screening of excavated materials (taken from the excavator bucket) for VOCs using a PID; and
- Soils with headspace VOC concentrations >30 ppm, heavy staining and/or odour are to be stockpiled separately from other excavated materials, for supplementary classification sampling and testing.

Loading and Transport of Contaminated Material

Direct loading of contaminated fill / soils to appropriate transport vehicles is preferred, with the transport of contaminated material off the site to be via a clearly distinguished haul route. Removal of waste materials from the site shall only be carried out by a recognised contractor holding the appropriate EPA NSW licenses, consents and approvals.

A site log shall be maintained by the contractor for each discrete excavation (numbered locations) to enable the tracking of disposed loads against on-site origin and location of the materials and corresponding (validation) sample numbers.

Measures shall be implemented to ensure no contaminated material is spilled onto public roadways or tracked off-site on vehicle wheels. Such measures will include the deployment of a vehicle washing/cleaning facility, which should be placed at a location before the egress point on the site. The facility shall be able to handle all vehicles and plant operating on-site.

All trucks transporting soils from the site are to be covered with tarpaulins (or equivalent).

Residue from a cleaning facility (if provided) will be collected periodically and either dewatered on site in a contained bunded area or disposed as a slurry to an approved facility. Such residue will be deemed contaminated unless shown by sampling and analysis to be below criteria.

The proposed waste transport route will be notified to Council and truck dispatch shall be logged and recorded by the contractor for each load leaving the site.

Disposal of Contaminated Material and Waste Tracking

All contaminated materials excavated and removed from the site shall be disposed at an appropriately licensed landfill facility. Copies of all necessary approvals shall be provided to the remediation consultant prior to any contaminated material being removed from the site.

Details of all contaminated materials removed from the site shall be documented by the contractor with copies of weighbridge slips, trip tickets and consignment disposal confirmation (where appropriate). Such information should be provided to the remediation/environmental consultant for reporting purposes.

Management of Stockpiled Contamination Material

Where waste classification of soil stockpiles is required, excavated soils will be stockpiled separately on either hardstand pavement or HDPE plastic liner, and limited to a maximum height of 2 m. Stockpiles should be surrounded by star pickets and marking tape, or other suitable material, to clearly delineate their boundaries. Stockpiles shall be lightly conditioned by sprinkler to prevent dust blow. Where stockpiles are to remain onsite for a period >24 hours, silt fences or hay bales should be erected around each stockpile to prevent losses from surface erosion (runoff).

Supplementary Waste Classification (where required)

Prior to being assigned to an appropriate waste disposal facility, all waste soils will be classified in accordance with the NSW EPA (2014a). If prior immobilisation treatment of the waste soils is required, disposal consent will be obtained from the NSW EPA prior to spoil transport.

Page | 34

After waste classification, the materials will be transported and disposed to EPA-licensed, waste landfill facilities.

In accordance with the NEPM (2013) guidelines, stockpiled soils will be sampled and laboratory analysed for waste classification purposes in accordance with the following methodology:

- Collection of one sample per 25 m³ of stockpiled materials as per NEPM (2013) guidelines, up to 250 m³. A minimum of three samples is required for any stockpile. For stockpiles > 250 m³ but < 2,500 m³ in size, a statistical analysis approach may be used with the collection of 10 samples.
- Collection of one intra-laboratory duplicate for every 10 primary samples collected and one interlaboratory duplicate for every 20 primary samples collected;
- Collection of one rinsate blank per sampling round;
- Analytical suite for waste classification will include:

8 priority metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); TRH; BTEX; PAH; OCP; OPP; PCB and asbestos, TCLPs (as required) and any additional chemicals of potential concern that may be identified during site remediation.

 Preparation of a Waste Classification Certificate detailing the interpreted soil waste classification for each stockpile, to enable appropriate off-site disposal.

As described above, appropriate dust control measures must be implemented during excavation of fill material at the site. These measures are described further in **Section 9** of this RAP.

The proposed sampling plan may be varied due to site constraints; however guidance from the appointed Environmental Consultant must be sought to ensure that deviations from this RAP are properly documented, as required under the OEH (2011) guidelines. Where anomalies in fill/soil consistency are noted (such as heavy staining, odour and/or presence of waste or oils), additional sampling and analysis may be necessary and guidance in this regard should be sought from the appointed Environmental Consultant.

8.2.6 Stage 6 – Site Validation and Classification of Materials Suitable for Reuse (such as Virgin Excavated Natural Material)

Prior to any deep excavation, the ASSMP prepared by EI (2019) should be implemented.

Validation of in situ Natural Soils

All fill and contaminated soil needing to be remediated must be removed from the site and a shallow validation assessment of freshly exposed natural soil must be completed prior to the commencement of bulk excavation works. Natural soil is potentially classifiable as virgin excavated natural material (VENM), however surface inspection and validation by near surface sampling and analysis is required. A validation plan is outlined in **Section 10**.

Where impact is identified in natural soils, the impact would be remediated and validated in accordance with the remedial excavation procedure described in Stage 4 above (**Section 8.2.4**). The resulting spoils would be assessed and classified in accordance with NSW EPA (2014b).

Validation of Imported Backfill Soils

Should reinstatement of remedial excavations require importation of backfill soils from offsite source(s), the imported backfill materials must be certified as meeting the NSW EPA Virgin Excavated Natural Material (VENM) classification, prior to importation to the site. To deem soils suitable for reuse on the subject site, the following confirmation procedure should be undertaken:

All imported soils brought to the site should be certified as VENM by the supplier; and

• Where certification cannot be provided, the imported materials must be validated in accordance with the procedure outlined in **Section 10.1**.

8.2.7 Stage 7 – Validation Report Preparation

At the completion of the remedial works, site validation sampling of environmental media (soil) and reporting must be completed in accordance with **Section 10** by a suitably qualified and experienced environmental consultant.

8.3 Remediation Hold Points

Given the nature of the development, specific hold points in the remediation work will be necessary. These will be dependent on data gap closure and other specific sampling and analysis tasks, as well as approvals required by the conditions of DA consent. They are designed to minimise remediation risks and identify the outcome/criteria that need to be met for the hold-point to be removed.

8.3.1 Remediation Schedule

An estimated schedule for the remedial works is detailed below in **Table 8-1**. The proposed preliminary schedule is based on the remedial works being completed as outlined in this RAP and is dependent on Council approval of any DA and conditions of consent.

Timeframe	Action
Start	Client Approval of Remediation Plan
Week 1/2	Stage 1 – Preliminaries
Week 3/4	Stage 2 – UST removal and validation
Weeks 4/5/6	Stage 3 – Additional Soil & Groundwater Assessment
Week 6/7	HOLD POINT – Re assess site contamination. Identify whether groundwater remediation or soil vapour assessment is warranted. *
Week 7/8	Stage 4 – Removal of Asbestos Impacted Fill
Approx. 2weeks after completion of Stage 4	Stage 5 - Handling, Management and Waste Classification of Remaining Fill and Concrete Slabs for Offsite Disposal
Approx. 4weeks after completion of Stage 5	Stage 6 – Soil Validation and Classification of Materials Suitable for Reuse (such as Virgin Excavated Natural Material)
Approx. 4 weeks after completion of Stage 6	Stage 7 – Validation Report Preparation

Note:

* If groundwater remediation or soil vapour assessment is needed, RAP will need to be revised and an additional

4 weeks may apply.

8.4 Remedial Contingencies

The proposed remedial technologies should be effective in dealing with the contamination present across the site. Nevertheless, remedial contingencies may be required should the scenarios detailed in **Table 8-2** arise.

Tabla	0 2	Domodio	Contin	annoine
Iable	0-2	Remeula	i Gonui	igencies

Scenario	Remedial Contingencies/Actions Required
Highly contaminated soils / sludges not identified during previous investigations are encountered, particularly at site boundaries	Work to be suspended until the Environmental Project Manager can assess impacted materials and associated risks. The leachability of contaminants to be assessed, before disposal options are considered. Follow the unexpected finds protocol in Section 9.8 of this RAP.
Underground tanks (i.e. USTs that have not been previously identified) are encountered at the site	Systems to be removed and the excavations appropriately validated and backfilled by experienced contractor. Tank removal works to be reported by appropriate environmental consultant, in accordance with EPA (2014b) <i>Technical Note: Investigation of Service Station Sites</i> and Australian Standard AS4976 (2008). Follow the unexpected finds protocol in Section 9.8 of this RAP.
Asbestos wastes are encountered	Work to be suspended and asbestos removed by a suitably qualified contactor, in accordance with SafeWork NSW regulations. Follow the unexpected finds protocol in Section 9.8 of this RAP.
Residual soil impacts remain on-site between site boundary and basement excavation post removal of USTs	Assess potential vapour hazard and delineate plume. Should significant soil vapour contamination be identified during Stage 3 (Refer to Section 8.2), consider soil vapour monitoring program and the implementation of a vapour membrane barrier system within the final development design.
Contaminated groundwater (including LNAPL or DNAPL) encountered	Review groundwater conditions on site. Determine need for further investigation / remediation and/or longer-term management plan. Any dewatering may require approval under the <i>Water Management Act 2000</i> . Remedial options may include natural attenuation, extraction, bioremediation, PSH recovery using active pumping (including hydraulic control), installation of a groundwater permeability barrier, <i>in situ</i> oxidation or stabilisation.
Contaminated groundwater plume is identified and is migrating off-site, or there are increases in concentration due to increased infiltration	Review contaminant increase and analytes. Review active remediation alternatives (if necessary). Ensure down-gradient monitoring is undertaken. Carry out fate and transport modelling and assess the need for further action.
Contamination is identified near heritage items or significant trees (if identified)	Stop work. Review contaminant concentrations and risks to heritage items / flora. Assess human health and environmental risks if contamination remains in place. Review natural attenuation options.
Changes in proposed basement excavation depth	Review remediation works for the site.
Changes in proposed land use(s) at the site	Review remediation works for the site.

9. Site Management

9.1 Responsibilities and Contacts

The responsibilities for the various parties involved with the remediation program are outlined in **Table 9-1.**

Table 9-1	Site	Management	Responsibilities
-----------	------	------------	------------------

Responsible Party	Details/Contacts	Responsible for:
Principal Project Manager (PPM)	JQZ Pty Ltd	 Overall management of the site remedial activities.
Property Owner and Site Contractor	JQZ Pty Ltd	 Notification of site conditions to the EPA under the duty to report contamination under the <i>Contaminated Land Management Act 1997.</i> Registration of details of Site Audit Statement. Implementation of and compliance with the RAP. Notification to contractors of the existence of a RAP. Provision of copies of the RAP.
Environmental Management Coordinator / Remediation Supervisor	JQZ Pty Ltd and El Australia	 Ensuring site remediation works are carried out in an environmentally responsible manner. Liaison between the appointed Environmental Consultant and Council, providing regular updates and informing of any problems encountered. Ensuring all environmental protection measures are in place and functioning correctly during site remediation works. Reporting any environmental issues to owner.
Environmental Consultant	El Australia	 Preparation of the RAP. On-site management and guidance of the remedial works. Coordination of validation works, documentation, notifications and permits required to conduct remedial works to a standard suitable of obtaining approval from the NSW EPA. Completing validation sampling and monitoring as requested by the Remediation Contractor and dictated by the RAP. Liaison between remediation contractor and the client. Preparation and submission of supporting documentation for Site Auditor review.
Earthworks or Remediation Contractor	Engaged by JQZ Pty Ltd	 Ensuring all operations are carried out as identified in the RAP (remediation), as directed by the PPM and EMC. Inducting all employees, subcontractors and authorised visitors on procedures with respect to site works, WHS and environmental management

Responsible Party	Details/Contacts	Responsible for:
		 procedures. Reporting any environmental issues to EMC. Maintaining site induction, site visitor and complaint registers. Ensuring that fugitive emissions and dust potentially leaving the confines of the site are suitably controlled and minimised. Ensuring that water containing any suspended matter or contaminants is minimised, does not leave the site and is suitably controlled, so as not to pollute the environment. Ensuring that vehicles are cleaned and secured so that no mud, soil or water is deposited on any public roadways or adjacent areas. Ensuring that noise and vibration levels at the site boundaries comply with the legislative requirements. Preparation of a Construction Environmental Management Plan (CEMP) and Work Method
Local Council	Strathfield Municipal Council	 The RAP will accompany the DA and implementation of the RAP shall become a condition of the Development Consent. Ensuring requirements of Development Consent and other planning instruments are met. Registration of details of Site Audit Statement on Section 149(5) Planning Certificate.
Qualified Independent Consultant – NSW Accredited Site Auditor (if appointed)	TBA	 Review of RAP, Site Validation Report. Preparation of Site Audit Statement and Site Audit Report. Review of updates, revisions or amendments as applicable. Provide interim audit advice of consultant or client submissions. Conduct inspections during remedial works.

9.2 Materials Handling and Management

Table 9-2 summarises the measures that should be implemented in respect of materials handling during excavation and remediation works at the site.

 Table 9-2
 Materials Handling and Management Requirements

Item	Description/ Requirements
Earthworks contractors	 Excavation of fill materials should be completed by a suitably qualified contractor to ensure: All site staff are aware of the environmental and health and safety requirements to be adhered to; There is no discernible release of dust into the atmosphere as a consequence of the works; There is no discernible release of contaminated soil into any waterway as a consequence of the works; and There are no pollution incidents, health impacts or complaints.
Stockpiling of materials	 All stockpiles will be maintained as follows: Stockpiles must be located on sealed surfaces such as sealed concrete, asphalt, or high density polyethylene. Should stockpiles be placed on bare soils, they should be so on yet to be remediated areas. Contaminated materials should only be stockpiled in locations that do not pose any environmental risk (e.g. hardstand areas). Excavated soils should be stored in an orderly and safe condition (≤2m height). Stockpiles should be battered with sloped angles to prevent collapse. Stockpiles should be covered after being lightly conditioned by sprinkler to prevent dust blow and control odours. Air emissions to be controlled by using a hydrocarbon mitigation agent, such as BioSolve®, Pinkwater®, Anotech® or an equivalent product selected by the contractor, in combination with the fine mist spraying. Should the stockpile remain <i>in situ</i> for over 24 hours, silt fences or hay bales should be erected around each stockpile to prevent losses from surface erosion (runoff). Stockpiles will be strategically located to mitigate environmental impacts while facilitating material handling requirements.
Loading of material	 Loading of stockpiles / materials will be as follows: Transport of contaminated material off the site is to be via a clearly distinguished haul route. Measures shall be implemented to ensure no contaminated material is spilled onto public roadways or tracked off-site on vehicle wheels. Such measures should include the use of a wheel washing/cleaning facility, placed before the egress point on the site, and should be able to handle all vehicles and plant operating on-site. Residue from the cleaning facility should be collected and either dewatered on site in a contained / bunded area, or disposed as a slurry to an approved facility. Such residue will be deemed contaminated unless proven otherwise.
	 Guidelines. If prior immobilisation treatment of the waste soils is required, disposal consent will be obtained from the NSW EPA prior to spoil transport. All trucks transporting soils from the site are to be covered with tarpaulins (or equivalent).

Item	Description/ Requirements
	 All haulage routes for trucks transporting soil, materials, equipment and machinery shall comply with all road traffic rules, minimise noise, vibration and odour to adjacent premises, utilise state roads and minimise use of local road.
	 All deliveries of soil, materials equipment or machinery should be completed during the approved hours of remediation and exit the site in a forward direction.
	 Removal of waste materials from the site shall only be carried out by a recognised contractor holding the appropriate EPA NSW licenses, consents and approvals.
	 Unless hazardous, waste materials must be transported less than 150km from the source (POEO 1997, Waste 2014) and landfills are required to be licensed for the category of waste they are scheduled to receive.
Material tracking	Materials excavated from the site should be tracked from the time of their excavation until their disposal. Tracking of the excavated materials should be completed by recording the following:
	 Origin of material;
	 Material type;
	 Approximate volume; and
	 Truck registration number.
	Disposal locations will be determined by the remediation contractor. Disposal location, waste disposal documentation (weighbridge dockets) and the above listed information should be provided to the remediation consultant for reporting purposes.
Material visual inspection prior to validation sampling.	Following the completion of remedial works as specified within this RAP, the following applies:
	 A suitably qualified environmental scientist should undertake a visual inspection of the work area. If visual observations indicate contamination, the earthworks contractors should rectify any issues arising from the inspection (i.e. further excavation or 'chasing out' until soils show no evidence of contamination based on visual inspection and/or odours).
	 Following satisfactory completion of the visual inspection, validation sampling of soils should be completed. Validation sampling is discussed in Section 9.
	Only following satisfactory validation will remedial works be deemed as completed.

9.3 Management Measures

All work should be undertaken with due regard to the minimisation of environmental effects and to meet all statutory environmental and safety requirements. A CEMP and Dewatering Management Plan should be developed for the site works by the site contractor/builder, which takes into account relevant guidance including, but not limited to:

- DA Conditions of Consent;
- Strathfield Municipal Council Local Environmental Plan 2012; and
- Managing Urban Stormwater, Soils and Construction, Volume 1: 4th Edition (March 2004).

Overall site management requirements related to the remedial works are presented in Table 9-3.

Table 9-3 Site Management Measures

Category	Measure
Demolition (including Asbestos Management)	Appropriate measures shall be taken to ensure that demolition works are completed in accordance with SafeWork NSW Standards and Codes of Practice. Any asbestos identified within building materials should be managed in accordance with SafeWork NSW Codes of Practice and Australian Standards.
	Note: As demolition <u>has already been completed at the site</u> , site walkover inspections will be performed after the hardstand flooring is removed to visually screen the site and assess for visible evidence of fibre cement sheeting (FCS), which could potentially be asbestos-containing material (ACM). All detected fragments of FCS must therefore be collected and bagged for appropriate offsite disposal.
Groundwater Management and Control	Given the proposed site redevelopment involves a four level basement car parking and dewatering will be required; appropriate measures shall be taken to ensure that a Dewatering Management Plan and application to WaterNSW is put in place. Geotechnical advice should be sought with respect to this.
Site Stormwater Management and Control	 Appropriate measures shall be taken to ensure that potentially contaminated water does not leave the site. Such measures should include, but not be limited to: Diversion and isolation of any stormwater from any contaminated areas; Provision of sediment traps including geotextiles or hay bales; and Discharge of any water to drains and water bodies must meet the appropriate effluent discharge consent condition under the <i>Protection of the Environmental Operations Act 1997.</i>
Soil Management	Appropriate measures shall be taken to ensure soils are excavated using a methodology appropriate to reduce nuisance dust and odours from leaving the boundary, and are disposed of in accordance with the NSW Government <i>Protection of the Environment Operations (Waste) Regulation 2014.</i>
Dust and Odour	Control of dust and odour during the course of the remediation works shall be maintained by the contractor to ensure no nuisance dust or odours are received at the site boundary according to requirements of Strathfield Municipal Council DCP 2012.
	Action levels and specific control measures would be described in the site CEMP and may include, but not necessarily be limited to the following:
	 Site wide water spraying, as and when appropriate, to eliminate wind-blown dust; Use of mist sprays, and/or sprinklers on stockpiles, fill screening areas and loaded fill to lightly condition the material;
	 Use of tarpaulin or tack-coat emulsion or sprays to prevent dust blow from stockpiles or from vehicle loads;
	 Covering of stockpiles or loads with polythene or geotextile membranes;
	 Restriction of stockpile heights to 2m above surrounding site level;
	 Ceasing works during periods of inclement weather such as high winds or heavy rain;
	 Use of vapour masks or respirators for works near VOCC-impacted areas (if required); and
	 Regular checking of the fugitive dust and odour issues to ensure compliance with the CEMP requirements, undertaking immediate remedial measures to rectify any cases of excessive dust or odour (e.g. use of misting sprays or odour masking agent).
	It is advised that all site workers use adequate dust masks during soil excavation and that machine operators remain within an enclosed, air conditioned cabin.

Category	Measure
Noise and Vibration	Noise and vibration will be restricted to reasonable levels. All plant and machinery used on site will be noise muffled to ensure emissions do not breach statutory levels as defined within the Strathfield Municipal Council LEP 2012.
Hours of Operation	Working hours will be restricted to those specified in the site specific DA conditions.
Community Engagement	 Community engagement should be carried out in accordance with Schedule B(8) of the NEPM (NEPC, 2013). Prior to the commencement of any remediation works at the site, every owner and occupier of any land located either wholly or partly within 100m of the boundary of the premises (including local council and the RMS) should be notified at least 30 days in advance. The notice should include: Advice of demolition and excavation work to be carried out on the premises; State the time and date such work is to commence; Indicate that the works are being conducted to minimise any risk of site contamination impacting on off-site receptors; Provide appropriate site signage at an easily readable location on the site fencing, including site contact name and phone number to be contacted should any matter arise; and Provide contact information and procedure for registering any complaints.
Incident Management and Community Relations	 While various environmental management and occupational safety plans will be developed to protect human health and the environment, incidents may occur which pose a risk to the various stakeholders. To mitigate these risks and ensure that a suitable response is carried out quickly, a response plan to any incident that may occur on site should be prepared and various responsibilities assigned. The site health and safety plan and environmental management plan should document these procedures and responsibilities, and incident contact numbers should be maintained in an on-site register. All other relevant emergency contact numbers such as Police, Fire Brigade, and Hospital should be listed in the Health and Safety Plan and posted on-site for easy access.

9.4 Amendment of RAP

The RAP must be amended and re-issued in one, or more, of the following circumstances:

- 1 There is a change in land use to something more sensitive than residential with limited access to soil (as defined in NEPC (2013) Schedule B1, Table 1A(1));
- 2 There is modification to the Certificate(s) of Title;
- 3 Contaminated material found within the site is different to that described in this RAP; and/or
- 4 There is a modification to NSW environmental or planning legislation affecting the RAP.

The RAP can only be amended and re-issued by a certified Environmental Consultant.

9.5 Distribution of RAP

The RAP and any subsequent amendments must be distributed to the following parties:

- 1 Current Site Owner;
- 2 Strathfield Municipal Council; and
- 3 Remediation Contractor responsible for remedial works, construction, demolition, management and maintenance of the site.

9.6 Contingency Management

Contingency plans for anticipated problems that may arise on-site during the course of the remediation are presented below in **Table 9-4.**

Table 9-4 Contingency	wanagement
Anticipated Problems	Corrective Actions
Chemical / Fuel Spill	Stop work, notify above site project manager. Use accessible soil or appropriate absorbent material on site to absorb the spill (if practicable). Stockpile the impacted material in a secure location, sample and determine the appropriate disposal/treatment option.
Supplementary Asbestos Identification	Where asbestos containing material is detected in soil all works are to stop. The contractor is to engage a suitably qualified environmental consultant to undertake an assessment of contamination. All works associated with the disturbance and removal of asbestos impacted fill at the site must be undertaken in accordance with SafeWork NSW guidelines.
	A risk assessment by an independent licensed asbestos assessor or competent person, including contaminated site assessment practitioners, should determine the most appropriate control measures and remediation strategies.
	Asbestos-contaminated soil is also subject to requirements of other regulatory agencies such as the EPA, Pubic Health and local governments. Where guidance on the assessment and remediation of contaminated sites is sought, the NEPM (2013) should be referred to.
	A licensed asbestos removalist must notify the regulator in writing at least five days before the licensed asbestos removal work commences and must also obtain a permit (SafeWork, 2016).
	Removal of asbestos from contaminated soil will require a Class A licensed asbestos removalist for any friable asbestos to be removed, or a Class B licensed asbestos removalist if non-friable asbestos is to be removed.
	The asbestos removalist must prepare an asbestos removal control plan for the proposed earthworks.
	A site specific Asbestos Management Plan (AMP) plan must be prepared in conjunction with an asbestos register competent person to document the management measures required to address risk associated with potential exposure to asbestos in accordance with NSW SafeWork requirements and must include:
	 Work area isolation (barrier protection, buffer zone);
	 Removal methods (friable/non-friable); Contention tion operation is attended (decontention tion operation) and
	 Contamination control methods (decontamination procedures); and Health and safety procedures (respiratory protection)
	Asbestos related works at the site involving disturbance of soil must be managed strictly in accordance with this RAP and the AMP.
	There is no requirement to undertake asbestos fibre air monitoring during the removal of the non-friable asbestos materials on the boundary of the work areas. However as a matter of due diligence asbestos fibre air monitoring is recommended to be undertaken on the boundary of the work areas. Asbestos fibre air monitoring is required to be undertaken by a company independent of the demolition and /or asbestos removal company. The asbestos fibre air monitoring should be undertaken by a company that is NATA (National Association of Testing Authorities) accredited. Air monitoring for asbestos fibres must be conducted during the removal of friable asbestos-contaminated soils

Table 9-4 Contingency Management

	All asbestos fibre air monitoring must be conducted in accordance with the site specific AMP. The licensed asbestos removalist must stop work and notify SafeWork NSW immediately when respirable asbestos fibres are recorded at more than 0.02 fibres/ml in accordance with the Work Health and Safety Regulation (2017).
	All asbestos and any contaminated soil removed must be disposed of as asbestos waste according to the EPA and the requirements of the local licensed waste disposal facility.
	Under Clause 473 of the NSW Work Health and Safety Regulation 2017, a clearance inspection is required following the removal of ACM. A clearance inspection is to be carried out and a clearance certificate issued before the area can be re-occupied. The company undertaking the clearance inspection should be independent of the demolition and / or asbestos removal company.
Excessive Dust	Use water sprays to suppress the dust or stop site activities generating the dust until it abates.
Excessive Noise	Identify the source, isolate the source if possible, modify the actions of the source or erect temporary noise barriers if required.
Excessive Odours / Vapours	Stage works to minimise odours/vapours. If excessive organic odours/vapours are being generated, stop works and monitor ambient air across site for organic vapours with a PID and odours at site boundaries. Implement control measures including respirators for on-site workers, use of odour suppressants, wetting down of excavated material.
	No nuisance odours shall be detected at any site boundary as part of the remedial works. Should odour emissions be detected at or beyond the site boundary, it is recommended, as part of the CEMP and community consultation procedure, that the Remediation Contractor and the Principal Project Manager:
	Notify the owners and occupiers of premises adjoining and across the road from the site regarding potential odour issues. Notification should be in writing. This is also required by the Council Contaminated Land Policy.
	In the notification, as well as on street signage, provide contact details of the site personnel for anyone who may be concerned by odour emission during the remediation.
	Temporarily pause site works to allow for excess odour to subside to a level acceptable by off-site receptors, should it be necessary, after implementation of the above-listed control measures.
	Record logs for volatile emissions and odours. Such records should be kept on-site and made available for inspection on request.
	In regard to off-site impact from petroleum vapour, odour is generally detected at concentrations much lower than what will constitute a health-based risk. Measures listed above for odour control (Table 9-3) may also be applied for vapour control.
Excessive Rainfall	Ensure sediment and surface water controls are operating correctly. If possible divert surface water away from active work areas or excavations.
Water in Excavations	Collect samples and assess against relevant EPA (2014a) <i>Waste Classification Guidelines</i> , to enable disposal options to be formulated.
Leaking Machinery or Equipment	Stop the identified leak (if possible). Clean up the spill with absorbent material. Stockpile the impacted material in a secure location, sample and determine the appropriate disposal/treatment option.
Failure of Erosion or Sedimentation Control Measures	Stop work, repair failed control measure.

Unearthing Unexpected Materials, Fill or Waste	Stop activities, contact the site project manager. Follow the unexpected finds protocol as detailed in Section 10.8 of this RAP. Prepare a management plan if required, to address the issue.
Identification of Cultural or Building Heritage Items	Stop work and notify site project manager. Follow the unexpected finds protocol as detailed in Section 10.8 of this RAP. Prepare action or conservation plan as required.
Equipment Failures	Ensure that spare equipment is on hand at site, or that the failed equipment can be serviced by site personnel or a local contractor.
Complaint Management	Notify Client, Project Managers and Environmental Consultant (if required) following complaint. Report complaint as per management procedures. Implement control measures to address reason of complaint (if possible). Notify complainant of results of remedial actions.

9.7 Work Health and Safety Plan

As required by the NSW *Work Health and Safety Act 2011* and associated regulations, a Work Health and Safety (WHS) Plan should be prepared by the Principal Contractor (see **Responsibilities and Contacts, Section 9.1**). The purpose of this plan is to manage the health and safety of site workers and nearby residents, and address such issues as site security, exclusion zones, excavation safety, vibration, noise, odour and dust levels. The plan should address the risks during the remediation works and cover site specific requirements associated with the contaminants present within the site soils (including vapour) and groundwater.

The site officer responsible for implementing health and safety procedures should induct all site personnel so that they are aware of and comply with, the requirements of this document. It is the contractor's responsibility, with assistance from client/owner(s) of the site to ensure that all other permits, approvals, consents or licences are current. The hazards and mitigation measures relevant to the remedial works are presented in **Table 9-5**.

Anticipated Problems	Corrective Actions
Chemical Hazards	Contaminated sites have chemical substances that may present a risk to human health and the environment. Chemicals of concern and associated risks are as detailed within the Conceptual Site Model, in Section 3. The site specific WHS plan should set out controls to mitigate any potential risks.
Physical Hazards	The following hazards are associated with conditions that may be created during site works:
	 Heat exposure;
	 Buried services;
	 Noise, vibration and dust;
	 Electrical equipment; and
	 The operation of heavy plant equipment.
Personal Protective Equipment and Monitoring	Personnel should, wherever possible, avoid direct contact with potentially contaminated material. Workers are to ensure that surface waters or groundwater is not ingested or swallowed and that direct skin contact with soil and water is avoided. Standard PPE with the addition of disposable P2 dust masks as specified for the contractor will be sufficient for the prescribed remedial works.

Table 9-5 Remedial Hazards

9.8 Unexpected Finds Protocol

Should unexpected finds be encountered, the procedure outlined in Table 9-6 should be followed.

10. Validation Sampling and Analysis Quality Plan

The remediation of the impacted area will be deemed acceptable based on the achievement of the following three validation objectives:

- 1. **Remedial Excavations** Validation of the remedial excavations will continue to the extent of the impacts as defined by delineation testing, and resulting contaminant concentrations are within the *Remediation Acceptance Criteria* (Section 5.1).
- 2. **Backfill Materials** Should backfilling be required, validation of imported fill materials used for the backfilling of remediated areas would be required to verify their suitability for the proposed land use.

10.1 Validation Soil Sampling Methodology

Validation sampling would be undertaken following the removal of identified contaminated material to ensure that the vertical and lateral extent of the contamination has been defined, as outlined in **Table 10-1**. Should residual contamination be identified, it would be "chased out" where appropriate until material exceeding the validation criteria has been removed. Soil sampling and handling of the collected samples will be as described in **Table 10-2**.

The collection of validation samples will be based on:

- Visual and olfactory observations; and
- Screening of material using a photo-ionisation detector (PID) for the presence of elevated levels of volatile organic compounds (VOCs).

All samples should be sent under appropriate 'chain of custody' (COCs) to NATA accredited laboratories.

If the levels of contaminants are found to exceed the criteria for solid waste, soil treatment by stabilisation and/or micro-encapsulation could be required before disposal.

Remediation Area	Sampling Density	Chemical of Concern
 Remediated excavations Potential UPSS remediation (Section 8.2.2) 	 Linear – 1 sampling location per 5 m length of excavation wall. Vertical – 1 sampling location per 0.5 m depth of excavation. Base – 1 sample location per 25 m². Vent and fuel lines – 1 sample location per 5 m length. 	 Heavy metals, TRH, BTEX, PAHs, Phenols, Asbestos
 Remediated excavations Staged fill excavations (Section 8.2.3) 	 Linear – 1 sampling location per 10 m length of excavation wall. Vertical –1 sampling location per 0.5m depth of excavation. 	 Asbestos (Gravimetric according to NEPM 2013/WADOH Guidelines) PAHs including Carcinogenic PAHs
Excavated surfaces Top of natural material within the basement footprint and retained deep	 1 Sample per 200m² <u>NOTE:</u> These samples will be used for: The classification of natural material within the proposed basement footprint prior to offsite 	TRH, BTEX, PAHs, heavy metals, OC/OP pesticides, PCBs, asbestos (gravimetric according to NEPM 2013 WADOH

Table 10-1 Validation Sampling Design

soils	 disposal; and The validation of natural soils remaining onsite within retained deep soil area and the basement footprint. 	Guidelines - quantitative analysis methodology).
Stockpiled Material	As per requirements specified in Section 8.2.5	Waste Classification: Heavy metals, TRH, BTEX, PAHs, OC/OP pesticides, PCBs, asbestos (presence / absence).
Imported Fill Material	 Imported Backfill Materials (Validation Sampling): 1 sample per 25m³ for VENM materials (lower sampling frequency may be accepted for uniform materials, subject to approval by EI Environmental Manager). If material is required to be sourced from off-site to reinstate the sites, it should be certified suitable for the intended use. If the material is not Virgin Natural Excavated Material (VENM), Excavated Natural Material (ENM) or if no suitable certification can be supplied by the source then the material should be sampled at a rate of one per 100 m³. 	TRH, BTEX, PAHs, heavy metals, OC/OP pesticides, PCBs, asbestos (as per the NEPM 2013 WADoH Guidelines - quantitative analysis methodology).

Excavation of contaminated material shall continue until the analytical results indicate compliance with the criteria (i.e. either the concentrations of all contaminants are within the criteria, or the 95% UCL average contaminant concentration for each detected parameter is within the criteria). If results indicate that additional excavation is necessary, the excavation shall be extended until the excavation surface samples indicate that the location is validated as meeting the criteria for each respective contaminant.

Action	Description
Sample Collection	Soil validation sampling will be directly from the exposed (excavated) surface, or from the material brought to the surface by the backhoe/excavator bucket. Sampling data shall be recorded to comply with routine chain of custody requirements.
Sampling Frequency	As outlined in Table 10-1 .
Sampling, Handling,	The use of stainless steel sampling equipment.
Transport and Tracking (for non-volatiles)	 All sampling equipment (including hand tools or excavator parts) to be washed in a 3% solution of phosphate free detergent, followed by a rinse with potable water prior to each sample being collected.
	 Direct transfer of the sample into new glass jars or plastic bags is preferred, with each plastic bag individually sealed to eliminate cross contamination during transportation to the laboratory.
	 Label sample containers with individual and unique identification including project number, sample number, sampling depth, date and time of sampling.
	 Place sample containers into a chilled, enclosed and secure container for transport to the laboratory.
	 Provide chain of custody documentation to ensure that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to the environmental laboratory.
Soil Sample Containers	Metals - 250g glass jar / refrigeration 4°C / 6 months (maximum holding period).

Table 10-2 Validation Sample Collection and Handling Procedures

Action	Description
and Holding Times	 TRH/VOCs - 250g glass jar / refrigeration 4°C / 14 days (maximum holding period). PAH/OCP/OPP/PCB - 250g glass jar / refrigeration 4°C / 14 days (maximum holding period). Asbestos – up to a 10 litre resealable plastic (polyethylene) bag/no
	refrigeration/indefinite holding time.
Laboratory Analysis	Each sample obtained for soil validation purposes will be analysed for COCP list outlined in Section 3.3 . Testing of imported materials intended for backfilling of excavated areas shall include, but not be limited to, the minimum suite specified for imported fill under the EPA (2014a) guideline (e.g. heavy metals, TPHs, BTEX, PAHs, OCPs, OPPs, PCBs and asbestos), plus foreign materials (via RTA T276 method) and the physicochemical parameters pH and EC.
Field QA/QC	 Quality assurance (QA) and quality control (QC) procedures will be adopted throughout the field sampling program to ensure sampling precision and accuracy, which will be assessed through the analysis of 10% field duplicate/replicate samples. Appropriate sampling procedures will be undertaken to prevent cross contamination, in accordance with EI's Standard Operating Procedures Manual. This will ensure: Standard operating procedures are followed; Site safety plans are developed prior to works commencement; Split duplicate field samples are collected and analysed; Samples are stored under secure, temperature controlled conditions; Chain of custody documentation is employed for the handling, transport and delivery of samples to the contracted environmental laboratory; and Contaminated soil, fill or groundwater originating from the site area is disposed in accordance with relevant regulatory guidelines. In total, field QA/QC will include one in 10 samples to be tested as blind field duplicates, one in 20 samples to be tested as inter-laboratory duplicates (ILD), as well as one VOC trip blank (intra-lab) sample and one equipment wash blank sample per sample batch.
Laboratory Quality Assurance and Quality Control	The contract laboratory will conduct in-house QA/QC procedures involving the routine analysis of: • Reagent blanks; • Spike recoveries; • Laboratory duplicates; • Calibration standards and blanks; • QC statistical data; and • Control standards and recovery plots.
Achievement of Data Quality Objectives	 Based on the analysis of quality control samples (i.e. duplicates/replicates and in-house laboratory QA/QC procedures), the following data quality objectives are required to be achieved: conformance with specified holding times; accuracy of spiked samples will be in the range of 70-130%; and field and laboratory duplicates and replicates samples will have a precision average of +/- 30% relative percent difference (RPD). An assessment of the overall data quality will be presented in the final validation report, in accordance with the OEH (2011) and EPA (2017) guidelines.

10.2 Validation Reporting

All fieldwork, chemical analyses, discussions, conclusions and recommendations will be documented in a validation report for the site. The validation report will be prepared in general accordance with requirements of the EPA (2011) *Guidelines for Consultants Reporting on Contaminated Sites* and EPA (2017) *Guidelines for the NSW Site Auditor Scheme* and will confirm that the site has been remediated to a suitable standard for the proposed development.

The Site Validation Report will be submitted for Council, at the completion of the remediation works program.

11. Conclusions

Based on the information available from previous investigations at the site, this RAP has been prepared to inform the remediation works, including contingency management and unexpected finds protocol; at 11-17 Columbia Lane, Homebush, NSW. The buildings at the site have been demolished with only concrete slabs remaining.

It is envisaged that the remediation works will be implemented in stages, as follows:

- Stage 1 Preliminaries
- Stage 2 UST removal and validation
- Stage 3 Additional Soil & Groundwater Assessment (Data gap closure)
- Stage 4 Removal of Asbestos Impacted Fill
- Stage 5 Handling, Management and Waste Classification of Remaining Fill and Concrete Slabs for Offsite Disposal
- Stage 6 Soil Validation and Classification of Materials Suitable for Reuse (such as Virgin Excavated Natural Material)
- Stage 7 Validation Report Preparation.

In summary, EI considers that the site can be made suitable for mixed residential-commercial use with limited accessible soils, through the implementation of the works and validation process described in this RAP.

12. Statement of Limitations

This report has been prepared for the exclusive use of JQZ Pty Ltd, who is the only intended beneficiary of our work. The scope of the investigations carried out for the purpose of this report is limited to those agreed with JQZ Pty Ltd on 26 June 2019.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling locations chosen to be as representative as possible under the given circumstances.

EI's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. EI may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by EI.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.
- ASSMAC (1998) Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines,* part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 Minimum sampling points required for site characterisation, in Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia, AS 4482.1-2005.
- CIRIA (2007), Assessing Risks posed by Hazardous ground gasses to buildings. Construction Industry Research and Information Association CIRIA C665
- Chapman, G. and Murphy, C.L. (1989) *Soil Landscapes of the Sydney 1:100 000 sheet,* Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination. NSW Department of Environment and Conservation, DEC 2007/144, June 2007.
- DMR (1987) *Sydney 1:100,000 Geological Series Sheet 9130* (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.
- DOP (2011) The Assessment Guideline Multi-Level Risk Assessment (Ground Gas).
- El (2019) Acid Sulfate Soils Management Plan, 11-17 Columbia Lane, Homebush NSW, Report No: E24275.E14_Rev1, dated 16 August, 2019.
- EnRiskS (2016) Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs, Environmental Risk Sciences Pty Ltd
- EPA (1995) *Sampling Design Guidelines*. Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases. Environment Protection Authority of New South Wales, Contaminated Sites Unit.
- EPA (2014a) Waste Classification Guidelines, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.
- EPA (2014b) *Technical Note: Investigation of Service Station Sites*. Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 2014/0315, April 2014.
- EPA (2017) Guidelines for the NSW Site Auditor Scheme, 3rd Ed. EPA 2017P0269/121, October 2017.
- HEPA (2018) *PFAS National Environmental Management Plan*, Heads of EPAs Australia and New Zealand, January 2018
- Murphy CL (1997) Acid Sulfate Soil Risk Map of the Prospect/Parramatta River Sheet. Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.

- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps.* Department of Land and Water Conservation, Sydney, Second Edition.
- NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013, National Environmental Protection Council, April 2013.
- NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.5, August 2018.
- NSW Government (1997) Contaminated Land Management Act 1997 No 140
- NSW Government (2011) Work Health and Safety Act 2011, 1 January 2012
- NSW Government (2014) State Environmental Planning Policy No 55-Remediation of Land.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites. NSW Office of Environment and Heritage (OEH), OEH 2011/0650.
- STS (2019a) Detailed Site Investigation, 11-17 Columbia Lane, Homebush NSW, Report No: 19/1315, Project No: 21024/1934D-E, June 2019.
- STS (2019b). *Geotechnical Investigation* 11-17 Columbia Lane, Homebush NSW. Columbia Lane Developments Pty Ltd. Report No. 19/1962 Project No. 21024/1803D-G, dated April 2019.
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.* Published by the Western Australian Department of Health, May 2009.
- Workcover NSW (2014) Managing asbestos in or on soil, March 2014, NSW government, Workcover NSW

ABBREVIATIONS

ANZECC Australian and New Zealand Environment Conservation Council ANZG Agriculture and Resource Management Council of Australia and New Zealance B(a)P Benzo(a)Pyrene BGL Below Ground Level BH Borehole BTEX Benzene, Toluene, Ethyl benzene, Xylene CSM Conceptual Site Model DECC Department of Environment and Climate Change, NSW (formerly DEC) DP Deposited Plan DQO Data Quality Objectives EPA Environment Protection Authority EMP Environmental Management Plan ENM Excavated Natural Material GIL Groundwater Investigation Level GME Groundwater monitoring event HIL Health-based Investigation Level M Metres m Metres m AHD Metres relative to Australian Height Datum m bgl Metres below ground level NSW New South Wales OFH OFH of Environment and Heritage NSW (formerly DEC, DECC, DECC) M
ANZGAgriculture and Resource Management Council of Australia and New ZealandB(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCSMConceptual Site ModelDECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFHOFH
B(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCSMConceptual Site ModelDECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOFHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECC)
BGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCSMConceptual Site ModelDECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelMMetresmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOEHOEHOEH
BHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCSMConceptual Site ModelDECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECC)
BTEXBenzene, Toluene, Ethyl benzene, XyleneCSMConceptual Site ModelDECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECC)
CSMConceptual Site ModelDECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
DECCDepartment of Environment and Climate Change, NSW (formerly DEC)DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOFHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
DPDeposited PlanDQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
DQOData Quality ObjectivesEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOFHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
EPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOFHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
EMPEnvironmental Management PlanENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOFHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
ENMExcavated Natural MaterialGILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelMMetresmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
GILGroundwater Investigation LevelGMEGroundwater monitoring eventHILHealth-based Investigation LevelHSLHealth-based Screening LevelmMetresm AHDMetres relative to Australian Height Datumm bglMetres below ground levelNSWNew South WalesOEHOffice of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
GME Groundwater monitoring event HIL Health-based Investigation Level HSL Health-based Screening Level m Metres m AHD Metres relative to Australian Height Datum m bgl Metres below ground level NSW New South Wales OEH Office of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
HIL Health-based Investigation Level HSL Health-based Screening Level m Metres m AHD Metres relative to Australian Height Datum m bgl Metres below ground level NSW New South Wales OEH Office of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
HSL Health-based Screening Level m Metres m AHD Metres relative to Australian Height Datum m bgl Metres below ground level NSW New South Wales OEH Office of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
m Metres m AHD Metres relative to Australian Height Datum m bgl Metres below ground level NSW New South Wales OFH Office of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
m AHD Metres relative to Australian Height Datum m bgl Metres below ground level NSW New South Wales OFH Office of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
m bgl Metres below ground level NSW New South Wales OFH Office of Environment and Heritage NSW (formerly DEC, DECC, DECCW)
NSW New South Wales
OEH Office of Environment and Heritage NSW (formerly DEC DECC M/)
OLIT Once of Environment and Hemaye, NSW (formeny DEC, DECC, DECCW)
PAHs Polycyclic Aromatic Hydrocarbons
PFAS Polyfluoroalkyl substances
RAP Remediation Action Plan
SIL Soil Investigation Level
TRH Total Recoverable Hydrocarbons
UCL Upper Confidence Limit
USEPA United States Environmental Protection Agency
UST Underground Storage Tank
VENM Virgin Excavated Natural Material
VOCs Volatile Organic Compounds

Appendix A - Figures

Appendix B – Proposed Development Plans

Drawing No:	Description
AP01	Cover Page
AP02	Data
AP03	Site Plan
AP04	Basement 3 & 4
AP05	Basement 2
AP06	Basement 1
AP07	Ground Floor
AP08	Level 1
AP09	Level 2-6
AP10	Level 7
AP11	Level 8
AP12	Level 9-12
AP13	Level 13
AP14	Level 14-16
AP15	Level 17
AP16	Level 18-21
AP17	Levels 22
AP18	Level 23
AP19	Level 24
AP20	Level 25
AP21	Elevation NE
AP22	Elevation N
AP23	Elevation SE
AP24	Elevation SW
AP25	Section A
AP26	Section B
AP27	Adaptable & Livable Units
AP28	Shadow Diagrams 1
AP29	Shadow Diagrams 2

Drawing No:	Description
SP01	Site Analysis
SP02.1	GFA Calculation
SP02.2	GFA Calculation
SP02.3	GFA Calculation
SP02.4	GFA Calculation
SP03.1	ADG Natural Ventilation
SP04.1	ADG Solar Access 3D
SP04.2	ADG Solar Access 3D
SP04.3	ADG Solar Access 2D
SP04.4	ADG Solar Access 2D

11-17 COLUMBIA LANE, HOMEBUSH

PROPOSED MIXED-USE DEVELOPMENT

schedule of finishes

ney sandstone n entry feature wall blades

2: 3: PGH Bricks White metal powdercoat "Macarthur Mix Linear' finish Podium feature Feature tower facade facade

copied or used without itects.

winas and written dimensions take preferency do not scale from drawing
 all dimensions to be checked on site before commencement

Π al cies to be brought to the attention of the author.

reception@moscapserras.com.au
 www.moscapserras.com.au

4: Grey metal wall cladding finish

key plan:

north point:

Ν

 \oplus

6: White paint finish Balcony upstands and slab edges 5: Dark grey powdercoat finish Garage door, open grill commercial door

5

notes:

7: Dark grey paint finish External walls Duralloy paperbark satin powdercoat finish Metrix group riverstone screen Gallery balustrades

s: Light grey powdercoat finish Aluminium door & window frames

10: Glazing 'Grey Laminated' Windows, doors & balustrades 11: Metal vertical blade courtyard fencing Black powdercoat finish

Revision	Description	Dy	Date
PG	Prelminary	GH	15/08/17
P7	Pro-DA	GH	17/08/17
P11	Prelminary Consultant Issue	MA	17/01/18
P12	Prelminary Consultant Issue	50	17.10.18
P13	Pro-DAtassa	50	05.11.18
P14	Pro-DAIssue	50	04.05.19
P17	Prelminary Consultant Issue	MR	09.05.19
P18	Prelminary Consultant Issue	50	20.05.19
P19	Prelminary Consultant Issue	50	22.05.19
P22	Preliminary Consultant Issue	59	04.05.19

11-17 Columbia Lane, HOMEBUSH location client Columbina Lane Development Pty. Ltd Cover Page drawing title SP / GK drawn AP01 Issue

GH/MA P22

		Nº18	MEAT TYPE	GFA		NM							(8-55)	(9-15)	(9-13)		E	UNIT APARTM	UNT TYPE	GFA		NS			
L	1 80 2	2 812	1 MD NOTE		INTERNAL	THUMACE	MIC	10144	ALC: NO	UNNER	trosage with unit	170AAGE	NDLAN ACCESS	NOLAR ACCINE	ACOTEL UN	CADIE.	- F	1 80 2 80 1	NOTIS		011000	10064.0	MISC	101.44	ADAPTA
													>2+85	-2985				EVELG							
COMM	-			-	-	-				-		-					111	45.01 28	-		78	14	T	92	
AG-01	18				60	18		78			1			/		/	115 /	46.03 28			50	9		59	
6.00	18	28	-	-	50	29		68 114			1	1		/		-	116 A 117 A	45.04 28	-		- 50	8	+	58 85	-
01	18		-		52	28		90			1	1					118 /	46.06 28			75	10		85	
.05	-	28	plus att plus att	a a	98	22		154			1	-	-	1		-	119 /	46.08 28			55	12	+	65	
	18		plus all		69	17		86			1	1			1	1	121 /	46.09 28	_		55	10		65	
2.00 2.00	18	28		-	82 50	40		72		-	1	1		-	1	1	122 /	46.10 28 46.11 18	-		58	10	+ +	8/	
6.03	18		plus alt		69	17		36			1	1		-	1	1	126 /	46.12 28	_		78	14		92	
6.05	18	-	plus att		72	36		88			1	1		1		1	126	86.02 28			82	12		94	
01.14	7	s	•	922	889	225		1214	1	1		8				10	127 8	36.03 38	_		8	8		5.8	
VEL	1																129	6.05 28			77	10		87	
A1.03	-	28		-	78	34		92			1	-		-	1	/	110 8	6.06 28 6.07 28			80	10	-	90 87	-
41.03	18				50	9		59			1	1	1			1	112	6.08 28			82	16		98	
41.04	18	18	-	-	50	8		58			1			/		_	10	101AL 8 12	1	1647	1475	227		96	_
k1.06		28			75	11		86			1	1			-										
1.00	18		-	-	98	12		110			1	1	-	/		-	100	17.01 28			78	14	T	92	
1.09	18				58	13		71			1	1			1	1	185 /	17.02 28			78	10		88	
1.00	18	28			78	9		92	1	1	1	1		/	1	1	186 /	V7.04 28			- 50	2	\pm	5.8	F
81.02	Ē	28			82	11		93	1	1	1	1		1		1	138	47.05 28	-		75	10		85	F
#1.09 21.04	18	28			50	8		58 85		-	1	-		/	1		138 / 142 /	V/35 28 V7.07 28	-	\vdash	- 75 58	10	+	85 229	H
91.05	Ľ	28			72	15		87			1	1	1			1	341	17.08 18			51	15		66	
21.06	6	28	1	1429	1097	29	<u> </u>	91	2	2	1	2	1			10	342 / 348 /	V/129 28 28 V7.10 28		$\left \right $	51 72	15	++	88	H
		-							-	-		-				-	346	17.11 18	-		58	13		71	
EVEL 12.01	2	28		_	78	и		92				-					305 / 305 18	07.12 28	-		78	14	+	92	H
A2.02		28			78	20		88			1			1		1	107	27.02 28			82	11		93	
A2.03	18	+		-	50	9	H	59 58	-	-	1	+	1	1		-	100	27.03 18			50	8		58	F
A2.05	Ľ	28			75	20		85			1	1			1		252	27.05 28			72	16		88	
A2.00 A2.07	-	28		-	98	20	+1	85 110	-	-	1	12	1	/	H - F	-	235 B	27.06 28	-		80	10		90 87	H
A2.06	18		-		55	20		65			1	1	-	1		1	250	27.08 28			82	16		98	
A2.05	18	28	-	-	55	20	\square	65 87	-	-	1	12		1		-	254	101AL 9 12	•	1583	35	297	-	96 1714	-
A2 11	18	1			58	13		71			1	1			1	1									
12 12	28	28	_	-	78	34		92	1	1	1	1		/	1	1		EVEL8 48.01 28			78	14	-	92	_
2.02		28			82	12		94		1	1	1				1	236 /	48.02 28			78	10		88	
2.09	18	28		-	50	8		58 85		-	1	-		/	1		232 /	48.03 28	-		- 90	9	+ +	59	-
2.05		28				20		87			1	1				1	238 /	48.05 28			75	10		85	
.06	28	28	_	-	80	20		90	-	1	1	1	1	-		-	262 /	48.05 28	-		- 75	10	+	94	H
. 08		28			82	36		98			1		1				362 /	48.08 18			59	16		75	
2.09		28	1	1647	1475	227	-	96	2	2	1	12	1			12	261 /	48.10 18	-		58	13	+	228	H
																	265	48.11 28			78	14		92	
103	3	28			78	34		92			1	1			1		200 0	88.02 28			82	11	+	93	H
1.00		28			78	20		88			1			/		1	268	88.03 28	_		50	8		5.8	
2.04	18		-	-	50	8		59			1	- 1	-	/		-	172	8.05 28			65	22	+	85	H
1.05		28			75	20		85			1				1		171	88.06 28			92	16		98	
1.07	-	28		-	98	12		35			1	1	1	-		1	172	101AL 7 11	•	1482	1251	222	-	1494	-
1.06	18				55	20		65			1	1				1									
2.09	18	28	-	-	77	20		87		-	1	1		-		-	179 1	49.01 28			78	14	T	92	
	18				58	13		71			1	1			1	1	171	49.02 28			78	10		88	
2.12	28	28	-	-	78	54		92	1	1	1	1		/	1	1	175 /	49.03 28			- 90	9	+ +	59	-
12.02	-	28			82	12		94		1	1	1	1			1	177	49.05 28			75	10		85	
2.09	18	28	_	-	50	22		58 85		-	1	-		-	1		178 /	49.05 28			- 75	10	+ +	85	⊢
12.05		28				20		87			1					1	280 /	49.08 28			75	10		85	
2.06	28	28		-	80	20		90	-	1	1	1	1	_		-	141 /	49.09 28	-		58	10	+	94	H
2.08	Ű	28			82	36		98	-	-	1	1	1				281	49.11 28			78	14		92	
2.09		12	1	1647	1475	227	-	96	2		17	12	1			12	284 B	19.02 28	-		3d 82	9	1	93	H
	-	-				-		-	-	-							186	89.03 18			50	8		5.8	Ľ
M DO	÷	28		_	78	54		92			1	1					287 B	89.05	18		- 15 95	10	1	228	H
M.00		28			78	20		88			1			1		1	100	89.06 28			82	16		98	Ē
	18	\vdash	-	+	50	8	\vdash	58	-	-	1	+	1	1	\vdash	-	290	101AL 5 12	1	1500	1297	198		1495	4
AL 24	Ľ	28			75	20		85			1	-		1											
41.05	+	28		+	98	12	$\left \right $	#5 110	-	-	1	1	1	/		_	11 295 A	30.01 28		-	78	14	1	92	Г
M 05 M 05 M 05	18				55	20		65			1	1		1		1	292 Å	30.02 38	-		78	10		88	F
M 05 M 05 M 05 M 05	18	28	-	-	55	20		65 87	-		1	1		1			210 A 210 A	aread 28 20:04 28			50	2	+	5.8	F
AL DO AL DO AL DO AL DO AL DO AL DO		_			58	13		71			1	1			1	1	215 Å	30.05 38			75	10		85	F
AL DE AL DE AL DE AL DE AL DE AL DE AL DE AL DE	18		-		78	9		92	1	1	1	1		/	1	1	216 A 217 A	10.07 28			- 75	10	\pm	83	F
AL DO AL DO	18	28		-	82	12		94	/	1	1	1	1			1	218 Å	30.08 28			75	10		85	
A4 05 A4 05 A4 05 A4 05 A4 05 A4 05 A4 12 A4 12 A4 12 A4 12	18	28		-		8		58 85		-	1	-		/	1		299 Å 200 Å	2009 28 1010 28			58	10	++	94	H
AL DO AL DO AL DO AL DO AL DO AL DO AL DO AL DO BL DO BL DO BL DO	18	28		-	30	1. AN 1997		87			1	1		1		1	205 Å	1011 28			78	14		92	
AL 04 AL 05 AL 05 AL 05 AL 05 AL 05 AL 05 AL 05 AL 05 BL 05 BL 05 BL 05 BL 05 BL 05	18	28			50 75 77	20				1	1	1	1			/	202 B	30.02 28	-		51 82	9		92	E
AL 04 AL 05 AL 05	18	28 28 28 28 28 28			50 75 77 80 65	90 90 22		90	1		A	1	1				201	80.00 18			50	8		5.8	
AL 04 AL 05 AL 05	18	23 23 23 23 23 23 23 23 23			50 75 77 80 65 82	20 20 22 26		90 87 98	/	-	1					12	205 B	00.05			- 75		111	85	£
AL 04 AL 05 AL 05 AL 05 AL 05 AL 05 AL 05 AL 05 BL 05	38	28 28 28 28 28 28 28 28 28	1	1643	50 75 77 80 65 82 82 85 147 ⁶	20 20 22 26 20 237		90 97 98 96 1712	2	1	1	12	1				207 8				95	13	1.00	1 228	
AL 04 AL 05 AL 05	218 218 218 218 218 218 218 218 218 218	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1	1647	50 75 77 80 65 82 86 2475	20 20 22 25 20 237	0	90 87 98 96 1712	2	3	1	13	1	_				10.06 28			95 82	13		98	
AL 04 AL 05 AL 05	18 18 18 18 18 18	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1	1647	50 75 77 80 65 82 86 1475	20 20 22 25 20 237	•	90 37 98 96 1712	2	3	1	13					2.0	00.06 28 00.07 28		1501	95 92 86 1392	13 13 16 10		98 96	
AL DO AL DO	38	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1	1647	50 75 77 80 65 82 86 5475 78 78 78	20 22 22 23 20 237 237 237 237	•	90 87 98 96 1712 92 88	2	3	1	13	1		/	_	1	00.07 28 00.07 28 101.07 5 12	1	1501	95 82 86 1297	13 15 10 198	•	98 96 1495	
ALL DI ALL DI AL	38	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1	1647	50 75 77 80 65 82 86 5475 78 78 78 50	20 20 22 25 20 237 237 24 20 237	•	90 87 98 96 1712 92 88 59 70	3	3	/ / / /	13	1	/	/			1006 38 1007 38 1004 5 12	1	1501	95 82 86 1297	13 16 10 198	•	98 96 1495	
ALCO ALCO ALCO ALCO ALCO ALCO ALCO ALCO	118 118 118 118 118 118 118 118	23 23 23 23 23 23 23 22 23 23 23	1	1647	50 75 77 80 65 82 86 1475 78 78 50 50 75	30 30 22 35 30 237 237 24 34 30 9 8 20	•	90 97 98 96 1712 92 88 59 59 58 53 85	3	3		2 13		/	/	/ /	201 (E 201 (A 202 (A	10.006 28 10.007 28 10.007 28 10.04 5 12 EVEL 11 11.01 28 11.02 28	1	1501	95 82 86 1297 78 78	10 13 16 10 198 198	•	928 96 1495 92 88	
AL DI AL DI	38 38 38 5 5	23 23 23 23 23 23 23 23 23 23	1	1647	50 75 77 80 65 82 86 5475 78 50 50 50 75 75	30 20 22 35 237 237 237 237 237 237 237 237 237 237	•	90 97 98 96 1712 92 88 99 99 99 99 99 99 99 99 99 99 99 99	2	2		/ 13		/	7	///	209 A	0006 28 0007 28 0007 28 0101 28 0102 28 0103 28	1	1501	95 82 85 1297 78 78 50	13 13 16 10 198 198 14 10 9	•	9238 96 9495 92 88 59	
AL 00 AL 05 AL 05	28 28 28 28 28 28 28 28 28 28 28 28 28 2	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1	1647	50 75 80 65 82 84 50 50 50 50 50 50 50 50 50 50 50 50 50	30 20 22 35 20 237 237 24 20 9 8 20 20 20 12 20	•	90 87 98 96 1712 92 88 99 93 95 95 95 95 95 95 95 95 95 95	2	2	7 7 7 7 7 7 7 7 7 7 7	/ 13 / / /		/		/ / /	200 A 200 A 201 A 202 A 202 A 202 A 202 A 202 A	0006 28 0007 28 0007 28 100 28 100 28 1103 28 1104 28 1103 28 1104 28	1	1501	95 82 85 1297 78 78 50 50 50 75	13 13 16 10 198 14 10 9 8 10	•	9238 96 1495 92 88 59 58 88 58 85	
AL 00 AL 00	218 218 218 218 218 218 218 218 218 218	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1	1647	340 775 840 645 842 846 1475 78 540 540 540 540 540 540 540 540 540 540	20 22 35 20 237 237 237 237 237 237 237 237 237 232 232	•	90 87 98 96 1712 88 50 53 85 85 110 65 65 110 110 110 110 110 110 110 11	3	3				/		/ / / /	200 Å 200 Å 200 Å 201 Å 201 Å 201 Å	0006 28 0007 28 0007 28 1001 28 1102 28 1103 28 1104 28 1105 28 1106 28 1106 28 1106 28	1	1501	95 82 1297 78 78 78 50 50 75 75	13 14 19 198 14 10 9 8 10 10 10	•	9238 968 9495 9495 92 88 50 58 88 50 58 85 85	
All 010 All 020 All 02	1 18 3 8 3 8 3 8 3 8 3 8 5 5 5 5 5 6 1 18 1 18	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1667	30 75 80 65 82 86 1475 78 50 50 75 50 75 75 50 50 75 75 55 55 55 55 55 55 55 55	30 22 35 237 237 237 237 237 237 237 237 237 230 230 230 230 230 230 230 230 230 230	•	90 97 98 96 1712 92 92 92 92 92 92 92 92 92 9	3	3				/			200 A 200 A 201 A 202 A 203 A	0000 28 0007 28 0007 28 0007 28 0100 28 0100 28 0100 28 0100 28 0100 28 0100 28 0100 28 0100 28 0100 28 0107 28 0107 28	1	1501	95 92 92 95 1297 78 78 78 90 90 75 75 75 75 75	13 14 10 198 14 10 9 8 10 10 10 13 10	•	9238 966 1495 92 92 88 85 85 85 85 85 85 85	
All, Did All, Did All	38 38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1547	50 75 80 65 82 86 5475 78 78 50 50 50 55 55 55 55 55 55 55 55 77 75 98 55 55 55 77 75	20 20 22 25 26 20 227 237 24 20 9 8 20 20 20 20 20 20 20 20 20 20	•	90 87 98 96 1712 92 88 59 59 59 58 85 85 110 65 85 87 71 92	2	2	× × × × × × × × × × × × × × × × × × ×			/		/ / / / / / / /	2 00 K K K K K K K K K K K K K K K K K K	0000 28 00007 28 00007 28 100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28	1	1591	95 82 86 1297 78 78 50 50 50 75 75 75 75 84	10 13 16 10 198 14 10 9 8 10 10 10 10 10 10	•	9238 966 1495 92 88 50 58 85 85 85 88 85 94	
4 04 4 05 4 06 4 05 4 06 4 07 4 07 4 07 4 06 4 07 4 07 4 07 4 07 4 07 4 07 4 07 4 07	38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1	1547	540 775 80 665 82 1475 78 50 50 50 778 50 50 775 75 988 555 555 555 555 777 588 778 555 555 5	20 20 22 25 26 20 227 247 20 9 8 20 20 20 20 20 20 20 20 20 20	•	90 97 98 96 1712 92 88 59 58 55 58 55 55 55 55 55 55 55	3	2				/			201 A A A A A A A A A A A A A A A A A A A	0006 28 0007 28 0074 5 1074 5 1102 28 1102 28 1103 28 1104 28 1105 28 1106 28 1106 28 1106 28 1106 28 1108 28 1109 28 1109 28 1109 28 1109 28 1109 28 1109 28 1109 28 1109 28 1109 28 1109 28 1109 28	1	1501	95 82 86 78 78 78 50 50 50 75 75 75 75 75 75 75 75 75 75 75 75 75	13 14 10 198 14 10 9 8 10 10 10 10 13 10 10 12 12 14	•	9238 966 9495 92 88 50 58 85 85 85 85 85 88 85 94 71 92	
	38 38 38 38 38 38 38 38 38 38 38 38 38 3	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1	1647	50 75 80 65 82 86 86 86 86 86 82 78 50 55 55 55 55 55 55 55 55 55 55 55 55	20 20 22 35 23 23 23 23 23 23 23 23 23 23	•	90 97 98 98 99 97 92 98 99 99 92 98 99 95 95 95 95 95 95 95 95 95 95 95 95	2	3				/			200 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0006 28 0007 38 0074 5 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1106 28 1106 28 1108 28 1109 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28 1100 28	1	1501	65 82 84 12197 78 78 78 78 78 78 78 90 90 75 75 75 84 91 93 94 93 95 95 95 95 95 95 95 95 95 95 95 95 95	13 13 16 10 198 198 10 10 10 10 10 10 10 10 10 113 124 9	•	228 98 96 1495 58 88 85 85 85 85 88 85 85 88 85 94 71 92 60	
00000000000000000000000000000000000000	38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1647	500 755 800 82 8475 86 8475 86 8475 86 50 50 50 50 55 55 55 55 55 55 55 55 55	20 20 22 23 23 23 237 237 237 237 237 237 237	•	00 87 98 98 98 98 98 98 98 98 98 98	2	3				*			200 A 200 A 201 A 202 A 203 A	0.006 28 0.007 28 0.008 28 1.008 28 1.100 28	1	1501	95 82 85 1297 78 78 50 50 75 75 75 75 75 84 52 78 84 52 78 90	10 12 16 10 198 14 10 9 8 10 10 10 10 10 10 10 10 10 10		9238 966 1495 1495 1495 1495 1495 1495 1495 158 85 85 85 85 85 85 85 85 85 85 94 71 92 92 93 95 85 85 85 85 85 85 85 85 85 85 85 85 85	
	38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1647	50 75 75 80 82 82 84 84 56 50 50 50 50 50 50 50 55 55 55 55 55 55	20 20 22 25 55 50 20 227 20 227 54 50 9 9 9 20 227 20 20 20 20 20 20 20 20 20 20	•	00 87 98 98 98 98 98 98 98 98 98 98	2	3		23 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		/			200 A 200 A 201 A	00006 28 00007 28 00008 28 00008 28 01008 28 01008 28 01008 28 01009 28 <td>1</td> <td>3501</td> <td>65 82 85 78 78 78 50 50 75 75 75 75 75 75 84 51 52 50 75 75 75 75 75 75 75 75 75 75 75 75 75</td> <td>13 14 16 10 198 8 10 10 10 13 10 10 13 10 10 13 14 10 10 13 14 10 10 10 13 14 10 10 10 10 10 10 10 10 10 10 10 10 10</td> <td></td> <td>238 98 94 96 94 96 94 95 92 95 88 95 95 85 94 71 92 92 90 93 95 85 94 91 92</td> <td></td>	1	3501	65 82 85 78 78 78 50 50 75 75 75 75 75 75 84 51 52 50 75 75 75 75 75 75 75 75 75 75 75 75 75	13 14 16 10 198 8 10 10 10 13 10 10 13 10 10 13 14 10 10 13 14 10 10 10 13 14 10 10 10 10 10 10 10 10 10 10 10 10 10		238 98 94 96 94 96 94 95 92 95 88 95 95 85 94 71 92 92 90 93 95 85 94 91 92	
	38 38 38 38 38 38 38 38 38 38 38 38 38 3	23 23 23 23 23 23 23 23 23 23 23 23 23 2	a	1647	50 75 75 80 82 84 84 84 84 84 84 84 84 84 84 50 55 55 55 55 55 55 55 55 55 55 55 55	30 90 22 35 30 227 22 35 30 9 8 30 30 9 8 30 30 30 30 30 30 30 30 30 30 30 30 30	•	00 87 98 98 98 98 98 98 98 98 98 98	/ 3	1				/			200 4 4 200 4 4 200 4 4 201 4 4 202 4 4 202 4 4 202 4 4 202 4 4 203 8 4 20	0.000 28 0.000 28 0.000 5 12 VVEL 13 31 11.00 28 11.00	1	1591	65 82 82 1287 78 78 75 50 50 50 50 75 75 75 75 84 84 51 51 52 55 55 55 55 55 55 55 55 55 55 55 55	13 13 15 15 10 10 9 8 10 10 10 10 10 10 10 10 10 11 14 14 9 11 14 8 10 10 13 14 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	•	228 29 29 29 29 29 29 29 29 29 29 29 29 29	

-17	COLI	лаві	IA LAP	NE, HOME	BUSH													11-1 DATE:	7 COLUN 06.05.29	nev	LAØ	IE, HOM	EBUSH
NIT.	1.80	2112	ININ	AGTIL	GPA.	071836	10040	MIC	227.04	ADAPTABLE	want	17DALGE	17DALEIN	(9-15) SOLAR ACCESS	(9-15) NDLAA ACCINE	(9-15) NO SOLIM ACCINE	CROSS	uve	100	MAR NO.	MINT	NOTE	GPA.
-		_	_					-							- he mad			LEVEL	12				
	_	28		_		78	14	-	92			1			1	/		227 AL2.0	Ĩ	28	_		
5.03	28	_		_		50	9		59			1	1	1	_		- /	228 A12.0 229 A12.0	8 18	28			
	28	28				50	8 10		58 85			1		1				230 A12.0 231 A12.0	6 18	28	-		-
5.05 5.07	-	28	38	-	-	75 98	10		85 110			1	1	1			1	212 A12.0 213 A12.0	5	28 28	_		-
80.2 60.2	28	_		_		55	10		65			4	1	1	_		1	238 A12.0	4	28	_		
£ 10	_	28				77	10		87			1	1	1			1	216 412.1	0 18	-			
6.11 6.12	- 14	28				78	14		92			1	É		1	-	1	217 A12 1 218 812.0	6 18	28			
5.01 5.02	28	28				\$1 82	9		94	1	1	1	1	1	_	-		210 812.0	2 18	28	-		-
£0.2	28	28			-	50	8		58			1		1			_	241 912.0	6	28			
5.05	_	28				77	10		87			1	1	1			1	243 912.0		28	-		
5.07	28	28		_		65	22		87		1	1	1	1				200 812.0	5	28 12	1		1501
5.08 5.09		28				92 86	16		98 96			1	1	1			1	LEVEL	13				
2CAL	8	12	1		1647	1475	237	۰	1712	2	3		13				13	245 A13.0 205 A13.0	2	28 28	_		
7.01	-	18			_	78	14	_	92								_	267 412.0	1	28	_		
7.02		28		_		78	10		88			1			1		1	209 412.0	à	28			
7.04	28					50	8		5.9			1	ŕ	1			-	210 A13.0	6 18	28			
7.05	-	28			-	75	10	-	85 85			1	1	1			-	212 913.0	2 28	28	_	_	
7.07	28	-	F	_	-	58 51	51	F	229	-	-	1	1	1		_	1	25.0 \$13.0		28			
7.09	28					51	15		66			Ż	1	1		_		216 912.0		28	-		
r.10 7.11	28	28				7/2 58	19		88			1	1	ŕ		1	1	217 813.0 TOTA	2	28) 10	1		1179
7.12	28	28				78	24		92	1	1	1	1		-	1	1	LEVEL	14				
7.02	7*	28				82 55	11	F	93	1	1	1	1	1			1	218 414.0	1 18				-
7.04	-	28				75	10		85			1		1				258 A14.0 260 A14.0		28 28			
r.05 7.06		28				72 90	16		88 90			1	1	1			1	261 AL4.0 262 AL4.0		28	-		
7.07	28	28	F			65 82	22	F	87 98		1	1	1	1				26.0 AL4.0	1	28	_	_	-
7.09	_	28				86	10		96			1	1	1			1	215 814.0	6 18				
DEAT.		ш	°		1588	141/	207	•	1/14	1	1		18				14	210 824.0	2 0 18	28	-		
VEL 9 2.01	-	28			_	78	14	_	92			1				/		218 824.0	6	28			
1.02		28				78	10		88		_	1			1	_	1	272 814.0		28	_		
2.04	28					50	8		58			1	· ·	1			-	271 824.0	4	9	1		1175
1.05 1.06	-	28		-	-	75	10	-	85			1		1				LEVEL	15				
1.07		28		_		75	19		94		_	4	1	1		_	1	272 415.0	1 18	-	_		-
2.09	-	28				84	24		228			1	1				1	278 A15.0	-	28 28			
8.10 8.11	28	28				58	14		92			1			1	-	1	275 A15.0 276 A15.0	6	28	-		-
2.01	28	28			-	\$1 92	9		60 93	1	1	1	1	1		/	1	277 A15.0	5 10	28	_		
2.02	28					50 X	8		5.8		_	1		1		_		279 215.0	4 18				
2.05	28	-				65	22		87		1	1	1	1			1	281 915.0	8 18	28			
2.06	-	28			-	82 86	16	-	98			1	1	1			-	282 815.0	6	28	28	_	
ICAL.	7	11	0		5482	1251	222	0	1494	2	а		7				9	28.0 915.0	2	28	_		
151.9	_	18	_		_	79	14	-	97									TOTA	. 4	9	1		1175
2.02		28				78	10		88			1			1	<i>'</i>		LEVEL	16				
2.03	28					50	9		59			1	-	1				286 A16.0 287 A16.0	2 18	28	-		-
2.05	_	28		_		75	10		85 85			1		1			_	288 A26.0	2	28	_		
2.07		28				75	13		88		_	1	4	1		_		290 A16.0		28			
2.09		28				84	10		94			1	· ·					291 A26.0 292 A26.0	2 18	28			
2.10 2.11	28	28				58	13		71 92			1			/	/	-	201 216.0	2 18	28	-		-
2.01	28	28	F			\$1 82	9		60 93	1	1	1	1	1		/		215 816.0	2 10	23			
2.02	28					50	8		58		_	1		1		_		297 816.0		_	38		
2.05		28	38			95	10		208		1	1	1	1				210 826.0	0	28	-		
2.06	-	28			-	82 86	16	-	98			1	1	1				TOTA	4	9	1		1175
ICAL.	s	12	1		1500	1297	198	0	1495	2	а		7					LEVEL and 117.0	17 6 2* 1	_	_		
15L 1		1*			_	- 14		_	1.02						_			800 A17.0	1	28			
		28				78	24 10		88			1			1	-		802 A17.0 808 A17.0		28 28			
0.03	28 28		H			92 50	9	-	59			1	-	1				100 A17.0 101 A17.0		28	-	_	-
0.05	_	28				75	10		85		_	4		1		_	_	106 A17.0	3 18		_		
		28				75	13		88			1	1	1				ace \$17.0		28			
0.09		28				84	10		94			1	-	1				sos 217.0 111 217.0	1 10	28	-		-
010	28	28		-	-	58	13	-	71 92			+			-	/	-	111 817.0	6	-	38		
	28					51	9		60	1	1	1	1			/		TOTA	4	7	2		1099
0.03	28	_				8	8		58	-	-	1	-	1				LEVEL	18				
		28	38			95	10	E	208		1	1	1	1				11 1 A18 0 11 4 A18 0	2 18	28			-
0.06		28				92 95	16		98			1	1	1				115 A12.0		28	_		-
CAL.	\$	12	1		1501	1297	198	0	1495	2	а		7					117 A18.0		28			
151.5	1	_	_															118 A18.0 119 A18.0	2 18	4			
101	-	28	H			78	14	-	92			1			1	-		122 928.0	1 18				
103	28	-				50 50	9	-	59 58			1	1	1									
	-	28				75	10		85			1		1									
106		28				5	10	L	85			1	1	1									
109	-	28	F	-	-	75 84	10		85 94		_	1	1	1		_							
1.10	28	12		_		58	13		71			1				/							
101	28	4				51	9		60	1	1	1	1	-		1							
102	28	28				82 50	11		93 58	1	-	1	1	1									
		28	38			75	10		85 228		1	1	1	1									
106		28				82 66	16		98			1	1	1									
CAL.	5	12	1		1501	1297	198	0	1495	2	2		7			-							

notes:

BUSH													11-	17 CO	0LUN 6.13	ABIA I	ANE, HON	EBUSH												
				_					28.19	10.00	(6.75)									854		_					06.733	0.15	0.151	
CPA				-		-	1724468	rouce	10LM	10.44	NO SOLUM	CND55		-	Ť	Juna	INP TOPE	GPA		-		+	-		UTORAGE	rouse	10LM	(PAR) SOLIR	ND SOLUM	CND55
	ATLINES	TIRALCI	MIC 1	016	AGAPTABLE	UNING	with unit	armeni	ACCUL	ACCESS	ACCISS	VENTILATON		1	810 J	842 31	ED NOTES		INTERNAL	TERMICE	MBC 10	36 A	option	UNBUT	with unit	asement	ACCINE	40318	ACCESS	VENTILITION
													121 815	1.02		28			82	11	1	2	1	1	1	1	1			
_	78	14		92		-	÷	-	-	/	1		122 815	1.07 1	18	-			50	8		1			1		1			
	50	9		59			1	1					121 818	1.05	+	1		-	95	10	1	8	_	1	1	-	-	_	_	
	50	8 10		58 85		-	+	-	1	-			121 815	1.06		1			96	21	1	2			1	1	1			
	25	10		45			1						10		•	<i>'</i>		1099	966	145	0 11	.,	1	•		'				
	25	13		88 85		-	1	1	1	-			121	EL 19		_		-	0					_		_				
	\$4	10		94			1		1				124 A15	02	-	28	-	-	75	3 13	-	-	-	-	1	-	-	-	-	
	38	1.6		92		-	1	-	1	-	-		328 A15	403	-	28	_		75	10	1	5	_		1		1		_	
	51	9		60		1	1	1	-				300 A15	-05		28			78	14	1	2			1	-	1	_		
-	\$2	8		58	-	1	1	1	1	-			311 A15	06		28	-	-	77	10	-	2	1	/	4	+	1	_	_	
	25	10		\$5			1	_	1				111 815	.01 1					51	9		2	1	1	1	1	-		1	
-	95 82	13		98		-	1	-	1	-			334 010	.02		28			82	11	1	2	/	1	1	1	1			
	86	10		\$6			1	1	1				204 819	1.04		28			76	10		6	_		1		1	_	_	
1501	1297	298	0 3	495	1								817 819	05	-	1	1		95	13	1	8	_	1	1	1	1		_	
													10	1.000	4	2	2	1099	944	145	0 31	29	3	4		7			_	
	75	13		88			1	1	1				101																	
_	75	10		15			1	1	1	_			329 A20	.01 1				1	52	8	- 4				1		1			
_	28	10		94		-	1	-	1	-		-	300 A20	102	+	28	-	-	25	13			_	-	4	-	1	_	_	
	77	10		87	1	1	1	1	1				812 A20	-04		28			84	10					1	1	1			
	82	11		92	1	1	1	1	1		/		383 A20	1.05	-6	-	+	+	78	14		2	, 1	-	ΗŤ	-	1	_		
	50	8		\$8			1		1				301 A.A. 303 A.Z.	.07 1		-			53	8			<i>.</i>	Ľ.	1	1	1			
	75 95	10		801		1	1	1	1				305 815	01 1		T			51	9		T	1	1	1	1	1		1	_
	82	16		98			1		1				317 B15 308 B15	1.02 3		1			84 50	3			1	-	1	-	1			
1179	985	10	0 1	96 129	3	4	1	2	1				309 010	40.	Ŧ	28			76	10	1	-			1		1			
													350 B15 351 B15	.06					96	21	1	2		-	1	1	1			
	52	8		60			1		1		_		10	CRL -	4	,	2	1099	944	145	0 31	29	3	4		7				
	75	13		88			1	1	1				LEV	FL 21	_								_							
	25 84	10		85 94		-	÷	+	1		_		352 A21	.01 1	Ŧ	Ŧ			52	8	1	Ŧ		-	4	-	1			
	28	14		92			1	1					154 A21	.02		28			73	10	1		_		1		1	_	_	
_	53	10		\$7 61		-	1	1	1	-	_		355 A21	-04		28			84	10	1	1	_		1	1	1		_	
	51	9		60	1	1	1	1			1		154 A21 157 A21	-05		28	-	-	78	14		;+	1	1	1	1	-	-	-	
-	82 50	11		93 58	-	-	-	-	1	-			358 A21	.07 1	18				53	8	4				1	1	1			
	25	10		85									100 821	.01 1	-	28		-	82	11		2	-	1	1	1	1	_	-	
_	95 82	13	1	98		-	4	-	1	-			m1 821	.02 1	18	-			50	8		1			1		1			
	86	10		96			1	1	1				11 823	.06	+	1		+	95	10	1	8	_	-	1	-	-	_	_	
1175	1015	150	0 1	165	3	4		9					36 (821	-06				4000	96	21	1	7			1	/	1			
													10					1000				.,	•			1				
	75	13		\$\$			1	1	1				150	EL 22		_		-	- 52					_		_	1			
_	25	10		45		-	4	1	1				366 A22	-02		28			75	13	1	1			1					
	28	16		92			1	1	1				367 A22	- 03	+	-	-	-	25	10		5		-	4	-	1			
	77	10		\$7	1	1	1		1	_	_		369 A22	05 1					53	8					1	1				
	51	9		60	1	1	1	1			1		870 022	01 1			-	-	51 82	9	- 4		1		1		1	_	-	
_	82	11		93	1	1	1	1	1				172 823	.02 1					50	8	1	1								
	25	10		15									171 823	04	+	28		-	95	10	1	8	_	-	1	-	-	_	_	
_	95	13	1	801		1	1	1	1	-			171 823	06		1			96	21	1	2			1	1	1			
	86	10		\$6			1	1	1				10	CAL .	4	\$	2	915	785	121	0 9	6	2	3		6				
1175	1015	150	0 1	165	3	4		9					LEV	EL 23	_												_			
				_									176 A23	01 1	-	28	-	-	52	8	1	2	_	-	1	-		_	_	
	92 75	8	- 6	60 88	_	-	1	-	1		-		178 A23	40		28			25	10		5			1		1			
	75	10		15			1						179 A23 180 A23	1.05 1		28	-	-	81 53	10 8		+		-	1	÷	1		-	-
	\$4 28	10		94		-	÷	-	1		_		811 822	.01 1	18	-			51	9	4	2	1	1	1	1			1	
	77	10		87	/	1	1	1	1				101 023	.02 1		-			50	8				-	1	-	1			
	53 51	8		60	1	1	1	1	1		1		181 823	04	Ŧ	28			25	10	1	1	-	1	1	1	1		_	
	82	11		93	1	1	1	1	1				101 023	06					96	21	1	2		-	1	1	1			
	50	8 10		58 85			1		1				10	the -	4	\$	2	915	785	121	0 9	6	2	3		6	20			
	95	13	1	801		1	1	1	1				LEV	FL 24																
	82	16		16	_		1	1	1				387 A20	.01 1		Ŧ		-	52	8	4	T			1		1			
1175	1015	150	0 1	165	3	4	-	7				-	388 A20 389 A20	.02		28			75	14					1		1			
													190 A24	04	T	28			81	10	1	Ŧ	_	_	1		1		_	
	52	8		60			1		1				311 A20 312 820	.01		28	2 (3)(9)		95	10	1	6			1	1	-		1	
	25 25	13		88 85		-	÷	-	1		-		111 824	02	Ŧ	1	B 2 (300)		108	40	1	2	-		1	1	1		_	
	84	10		94			1	1	1				191 820	.04	1	28	2 (3)(9)		89	12	1	1			1		1			
	78	14		92 87	/	1	÷	1	1		-	-	396 824	05	Ŧ	28	2 (5)(9)		89	12	1	1	-		1		1		_	
	53	8		61			1	1	1				117 M.D	.07	1		B 2 (3)(P)		114	28	1	2			1	1	1			
	31 82	11		93	1	1	1	1	1		-		10	the i	2	2		1167	1027	211	0 11	28	0	0		6	11			
	50	8		58			1		1				-		-												_	_		
	25 95	10		85		1	1	1	1				ov	RALL	TOTA	5											(9-23)	(9-15)		
	95	229		204			1	1	1					11	ND 2		ED TOTAL	CFA.	INTERNAL.	TERMACE	MISC TO		options	UNDER .		stonada lasementi	NDLM +2HRS	101.18	ACCESS	CROSS VENTILATION
1099	242	244	0 1	-13	1	•		'						1	22 2	24 2	1 298	32840	28562	4875	22	37	59	28		215	290	59	59	107
_	0			60		_		_	1				N. 1	- 1	a4 3	-6.3	~						-dN	22%			to be con	firmed	4185	62.2%
	75	13		88			1		1																					
	25 84	10	H B	85 94	_	-	+÷		1		_	-																		
	28	14		92			- /	Ľ.	1																					
_	77	10	H	87	1	1	17	17	1		_																			
	51	9		60	1	1	1	1	-		1																			

amendments:

 Profession
 Datacipation

 PR
 Datacipation

 PR
 Palenimary

 PT
 Palenimary

 P11
 Palenimary Consultan

 P12
 Palenimary Consultan

 P13
 Palenimary Consultan

 P14
 Palenimary Consultan

 P14
 Palenimary Consultan

 P17
 Palenimary Consultan

 P18
 Palenimary Consultan

 P19
 Palenimary Consultan

 P19
 Palenimary Consultan

 P10
 Palenimary Consultan

 P11
 Palenimary Consultan

SITE AREA FSR allowed 5.0:1 Total Proposed CARPARKING Residential Residential @ 1.0 space 133.0 2Bed @ 1.0 space 234.0 3Bed @ 1.5 space 46.5 Sub Total Visitors @ 1.0 per 5 units 79.6 Total Required U A U U J J U J J U J J U J J J U J J U J J U J J U J J J U J J U J J J U J <thJ</th> <thJ</th> <thJ</th> <thJ</th> D: 8 00 / <th/</th> / / /

923.03	18					50	8		58			1		1		
923.06		28				75	10		- 85			1		1		
923.05			38			95	13		108		1	1	1	1		
923.06			31			96	21		117			1	1	1		
TOTAL	4	\$	2		915	785	121	0	906	2	3		6	20	 	
EVEL 2	4															
424.01	18					52	8		60			1		1		
\$26.02		28				25	13		88			/		1		
24.02		28				25	10		85			1		1		
24.04		28				81	10	_	91			/	1	1		
24.05	18		_			53	8		61			1	1	1		
		28		2 (53(P))		95	10		105			1	1		1	
			31	2 (3)(PV		108	40		148			1	1	1		
		28		2 (53(P))		98	14	_	112			1		1		
		28		2 (3)(PV		29	12		101			1		1		
		28		2 (53(P))		29	12		101			1		1		
224.06			31	2 (53(P))		98	26		134							
			38	2 (53(P))		114	28		152			1	1	1		
TOTAL	2	2			11(7	44333	244	0	4334		-				 	

WORK IN PROGRESS

6,568

32,840

32 840

413.5

493

H/ MA
P22

by dm dm<		
Gi 0807 Gi 0807 Bi 0700 Bi 0800	Dγ	Date
Git 75807 Git 75807 Git 75807 Git 87807 Git 87807 Git 87807 Git 87807 Git 87807 Git 87807	GH	15/08/17
	 GH	17/08/17
40 175 W 40 87.0 M 41 87.0 M 42 87.0 M 43 87.0 M 44 97.0 M 44 97.0 M 45 97.0 M 46 97.0 M 46 97.0 M	MA	17/01/18
00 0.0.14 01 0.0.16 02 0.0.16 03 0.0.19 04 0.0.19 05 0.0.19	50	17.10.18
	50	05.11.18
	50	04.05.19
	MR	09.05.19
20 22/05/19 moscq pserras arch	50	20.05.19
50 04.06.19 moscq pserfas graft	50	22.05.19
	50	04.05.19

reception@moscapserras.com.au
 www.moscapserras.com.au

			Main entry feature wall blades
Roof RL 86,800	Roof	<u>⊽</u> RL 86,800	2:
Level 25 7 RL 84,200	Level 25	<u>⊽</u> RL 84,200	PGH Bricks Macarthur Mix Linear' Podium feature facade
Level 24 v RL 81,150	Level 24	<u>⊽</u> RL 81,150	
Level 23 v RL 78,100	Level 23	▽ RL 78,100	
Level 22 RI 75 050	Level 22	₩ RI 75 050	3:
Level 21 - DI 72 000	Level 21	- BL 72 000	Feature tower facade
Lovel 21 Q RL 72,000	1	QRL 72,000	
Level 20 7 RL 68,950	Level 20	又 RL 68,950	
Level 19 v RL 65,900	Level 19	<u>⊽</u> RL 65,900	4: Horizontal interlocking colorbond panel cladding - Basalt
Level 18 - B RL 62.850	Level 18 - B	3_ <u>▼</u> RL 62,850	Level 4&5 Podium Facade
Level 17 v RL 59,800	Level 17	▽ RL 59,800	
Level 16 v RL 56,750	Level 16	<u>⊽</u> RL 56,750	
Level 15 v RL 53,700	Level 15	▼ RL 53,700	5: Dark grey powdercoat finish Garage door, open grill
Level 14-A VRL 50,650	Level 14-A	<u>⊽</u> RL 50,650	commercial door
Level 13 v RL 47,600	Level 13	⊻ RL 47,600	
Level 12 RI 44 550	Level 12	v RI 44 550	6.
Level 11 - RI 41 500	Level 11		White paint finish Balcony upstands and slab
	Level 10. A	<u>v</u> nc 41,300	edges
Level 10-AB V RL 38,450	Level 10-Ab	<u>⊃ ⊽</u> RL 38,450	
Level 9 7 RL 35.400	Level 9	⊈RL 35,400	7:
Level 8 RL 32,350_	Level 8	<u>▼</u> RL 32,350	Dark grey paint finish External walls
Level 7 v RL 29,300	Level 7	<u>▼</u> RL 29,300	
Level 6 v RL 26,250	Level 6	▽ RL 26,250	the set
Level 5 v RL 23,200	Level 5	<u>⊽</u> RL 23,200	8: Duralloy paperbark satin
Level 4 v RL 20.150	Level 4	▼RL 20,150	powdercoat finish Metrix group riverstone screen
Level 3 RL 17,100	Level 3	▽ RL 17,100	External screens
Level 2 RI 14 050	Level 2	₩ RI 14 050	
Level 1 - BL 11 000	Level 1		9:
20101 1 Q RL 11,000		QRE 11,000	Light grey powdercoat finish Aluminium door & window frames
<u>Ground._v RL 7,00</u> 0	Ground.	<u>▼</u> RL 7,000	
Basement 1 x RI 3 000	Basement -	1 vr BL 3 000	
Basement 2 - RL 0	Basement '	2 RL 0	10: Clasing Yormu Lamis
Basement 3 DL 2 000	Basement		Windows, doors & balustrades
Pasament 4	Desem+	<u>- ⊽</u> r(L -3,000	
basement 4	Basement 4	<u>+</u>	

North-East Elevation 1:250

 the strategy is used on the property of the author, and mail and the stephysical colour and without the authority of macco parent architects.
 The authority of the authority is larger scale bening and without dimension take parteriance.
 don't scale time dawing all dimensions to be checked on the battee commencement of auch.
 all disrepancies to be becapit to the affunction of the author. MIXED USE DEVELOPMENT north point: key plan: notes: amendments: project
 Broken
 Backfash

 Backfash
 Backfash

 P6
 Poleininary

 P7
 Pos-DA

 P11
 Poleininary

 P12
 Poleininary

 P13
 Pos-DAlsa

 P14
 Pos-DAlsa

 P17
 Positistary

 P18
 Pos-DAlsa

 P19
 Positistary

 P18
 Positistary

 P19
 Positistary

 P19
 Positistary

 P22
 Poleininary
 location 11-17 Columbia Lane, HOMEBUSH Ν client Columbina Lane Development Pty. Ltd \bigoplus SB 05.11.1 SB 04.06.1 MR 09.05.1 mpa drawing title Elevation NE excele 1.250 @ A1 project architect job no. 1.4028 drawing no. SP/GK drawn GH/MA AP21 Issue P22 SB 20.05.19 SB 22.05.19 SB 04.06.19 e reception@moscapserras.com.au www.moscapserras.com.au

WORK IN PROGRESS

Sydney sandstone Ма

11: Metal vertical biade courtyard fencing Black powdercoat finish

MIXED USE DEVELOPMENT mendments orth point key plar notes
 Revision
 Description

 P6
 Polin

 P7
 Pre-D,

 P11
 Polin

 P12
 Polin

 P13
 Pre-D,

 P17
 Polin

 P18
 Polin

 P19
 Polin
 location 11-17 Columbia Lane, HOMEBUSH winas and written d Ν client Columbina Lane Development Pty. Ltd ensions to be checked on st \oplus cies to be brought to the attention of the author drawing title Elevation N mpo e scale 1.250 @ A1 project architect job no. 14028 drawing no. SP/GK drawn AP22 issue BH/ MA P22 reception@moscapserras.com.au
 www.moscapserras.com.au

2: PGH Bricks 'Macarthur Mix Linear' Podium feature fac

Sydney sandston try feature wall I

Dark grey powdercoat finish Garage door, open grill commercial door

Dark grey paint finisl External walls

10: Glazing 'Grey Laminated loore & halu

fencing Black powdercoat finish

Roof vRL 86.800		Roof xRL 86,800
Level 25 vRL 84,200		Level 25 xRL 84,200
Level 24 vRL 81,150		Level 24RL 81,150
Level 23 _{v RL 78,100}		Level 23RL 78,100
Level 22 vRL 75.050		Level 22RL 75,050
Level 21 x BI 72 000		Level 21 x RI 72 000
Level 20 - RI 68 950		Level 20 - RI 68.950
		XRL 65,900
/el 18 - B _▼ RL 62. <u>8</u> 50		Level 18 - B _Z RL 62,850
Level 17 v RL 59.800		Level 17 xRL 59,800
Level 16 v RL 56,750.		Level 16
Level 15 vRL 53,700		Level 15RL 53,700
vel 14-A _▼ RL 50.650		Level 14-A _ RL 50,650
Level 13 vRL 47.600		Level 13RL 47,600
Level 12 v RL 44.550		Level 12RL 44,550
Level 11 v RL 41.500		Level 11RL 41,500
el 10-AB RL 38.450		Level 10-AB _{2 RL 38,450}
Level 9 v RL 35,400		Level 9 xRL 35,400
evel 8		Level 8
		Level 7 29,300
		XRL 26,250
Level 5 v RL 23.200		Level 5RL 23,200
Level 4 vRL 20,150		<u>Level 4</u> RL 20,150
Level 3 vRL 17,100		Level 3RL 17,100
Level 2 RL 14.050		Level 2
Level 1 vRL 11,000		Level 1RL 11,000
Ground. _{v RL 7,000}	STREET SPACE	Ground. _v RL 7,000
ement 1 _{vRL 3} 000	STORWWATER	Basement 1 _{v RL} 3,000
ement 2 vRL0		Basement 2 _g RL 0
ement 3 v RL -3,000		Basement 3gr RL -3,000
ement 4		Basement 4

4: Horizontal interlocking colorbond panel cladding - Basalt Level 4&5 Podium Facade

6: White paint finish Balcony upstands and slab edges

8: Duralloy paperbark satin powdercoat finish Metrix group riversione screen External screens

9: Light grey powdercoat finish Aluminium door & window frames

11: Metal vertical biade courtyard fencing Black powdercoat finish

12 Dor & which is basix REPORT AND PROGRESS

 this drawing is capyright and the property of the authors, and more that and a constrained and without the authority more that and a constrained and without the authority larger scale drawing and without dismusclars take preferences and and scale them drawing all dismuscing to be checked on pile balane commercement of allow. MIXED USE DEVELOPMENT north point: key plan: notes: amendments: project
 Off Version
 Description

 Revision
 Description

 P6
 Positinizary

 P7
 Pos-DA

 P12
 Positinizary

 P13
 Pos-DA Issue

 P14
 Pos-DA Issue

 P17
 Pos-DA Issue

 P18
 Pos-DA Issue

 P19
 Positinizary

 P19
 Positinizary

 P19
 Positinizary

 P19
 Positinizary

 P19
 Positinizary

 Dy
 Date

 GH
 1508/17

 GH
 1708/17

 MA
 1701/18

 SB
 47.45.18

 SB
 44.65.19

 MR
 0025.19

 SB
 202.65.19

 SB
 202.65.19

 SB
 202.65.19

 SB
 202.65.19
 location 11-17 Columbia Lane, HOMEBUSH Ν client Columbina Lane Development Pty. Ltd \bigoplus drawing rite Elevation SE SP / GK drawn GH / MA AP23 Issue P22 e reception@moscapserras.com.au w www.moscapserras.com.au

WORK IN PROGRESS

notes:	amendments:				projec	đ	MIXED USE DEVE	LOPMENT	
	Revision Description	Dy	Date		locatio	on	11-17 Columbia Lar	ne. HOMEBUSH	
	P6 Preliminary	GH	15/08/17						
	P7 Pm-DA	GH	17/08/17		client		Columbina Lane De	evelopment Ptv. L	_td
	P11 Preliminary Consultant Issue	MA	17/01/18						
	P12 Preliminary Consultant Issue	50	17.10.18						
	P13 Pre-DAIssue	50	05.11.18						
	P14 Pre-DA Issue	50	04.05.19		drawin	ag title	Elevation SW		
	P17 Preliminary Consultant Issue	MR	09.05.19						
	P18 Preliminary Consultant Issue	50	20.05.19		scale	1:250 @ A1	project architect	SP / GK drawn	GH/ MA
	P19 Preliminary Consultant Issue	50	22.05.19		iob no	14028	drawing no.	AP24 issue	P22
					-				

 didmension to be checked on site before commancement of work
 all discrepancies to be brought to the attention of the author
 ereception@moscopuerras.com.au
 www.moscopuerras.com.au

aer scale drawings and written dim

orth point

Ν

 \oplus

key plar

Roof							RL 87,000	
Level 25 RL 84,200								Level 25 g RL 84,200
Level 24	UNIT	UNIT	UNIT		UNIT	UNIT		Level 24 gRL 81,150
Level 23 gRL 78, 100	UNIT	UNIT	UNIT		UNIT	UNIT		Level 23 RL 78,100
Level 22	UNIT	UNIT	UNIT	1	UNIT	UNIT		Level 22 xRL 75,050
Level 21 _RL 72,000	UNIT	UNIT	UNIT		UNIT	UNIT	2 TOO A	Level 21 RL 72,000
Level 20 v RL 68,950	UNIT	UNIT	UNIT]	UNIT	UNIT		Level 20 xRL 68,950
Level 19 RL 65,900	UNIT	UNIT	UNIT	1[UNIT	UNIT		Level 19 RL 65,900
Level 18 - B RL 62,850	UNIT	UNIT	UNIT][UNIT	UNIT		Level 18 - B vRL 62,850
Level 17	UNIT	UNIT	UNIT		UNIT	UNIT		Level 17 RL 59,800
Level 16 RL 56,750	UNIT	UNIT	UNIT		UNIT	UNIT		Level 16 RL 56,750
Level 15 _RL 53,700	UNIT	UNIT	UNIT		UNIT	UNIT		Level 15 vRL 53,700
Level 14-A vr. 150.650	UNIT	UNIT	UNIT		UNIT	UNIT		Level 14-A gr RL 50,650
Level 13 RL 47.600	UNIT	UNIT	UNIT		UNIT	UNIT		Level 13 RL 47.600
Level 12 _RL 44,550	UNIT	UNIT	UNIT		UNIT	UNIT		Level 12 xRL 44,550
Level 11 RL 41,500	UNIT	UNIT	UNIT		UNIT	UNIT		Level 11 RL 41,500
Level 10-AB RL 38,450	UNIT	UNIT	UNIT		UNIT	UNIT		Level 10-AB _ RL 38,450
Level 9 RL 35,400	UNIT	UNIT	UNIT][UNIT	UNIT		Level 9 RL 35,400
Level 8 vRL 32.350	UNIT	UNIT	UNIT		UNIT	UNIT		Level 8- vRL 32.350
Level 7 RL 29,300	UNIT				UNIT	UNIT		Level 7 vRL 29,300
Level 6 vRL 26.250	UNIT	GALLERY VALKW Y	II.		UNIT	UNIT		Level 6 vRL 26.250
Level 5 vRL 23.200	UNIT				UNIT	UNIT		Level 5 RL 23.200
Level 4 vr RL 20.150	UNIT				UNIT	UNIT		Level 4 vRL 20.150
Level 3 vRL 17.100	UNIT				UNIT	UNIT		Level 3 xRL 17.100
Level 2 RL 14.050	UNIT			Нинин	UNIT	UNIT		Level 2 vRL 14.050
Level 1 vRL 11.000					UNIT	UNIT		Level 1 vRL 11.000
GRAMOPHONE	UNIT	HIII				GARBAGE		
Ground. v RL 7,000							POWELLS CREEK	Ground. TRL 7,000
Basement 1 vRL 3,000		В	ASEMENT CARPAR				CANAL	Basement 1 v RL 3,000
Basement 2 RL0		В	ASEMENT CARPAR					Basement 2 RL 0
Basement 3 VRL-3,000		В	ASEMENT CARPAR	(ING				Basement 3 v RL -3,000
Basement 4								Basement 4

4: Horizontal interlocking colorbond panel cladding - Basalt Level 4&5 Podium Facade

7: Dark grey paint finish External walls

8: Duralloy paperbark satin powdercoat finish Metrix group riverstone screen External screens

9: Light grey powdercoat finish Aluminium door & window frames

 Fit

 Head vertice librate county and decision

 Black providencial fination

 Image: Constraint of the state of

	1 4000		1005		
scale	1:250 @ A1	project architect	SP / GK	drawn	
drawing	g titlio	Section A			
client		Columbina Lar	ne Developi	ment Pty.	Ltd
location		11-17 Columbia	a Lane, HOI	VIEBUSH	
project		MIXED USE D	evelopm	ENT	

Section A 1:250

key plan:

 this drawing is copyright and the property of the outhor, and mail not be attached, coperate used without the outhorty loops color dowing and without hermissins rate preference. It and reaction to be indexed on the before commensativity at dimension to be indexed on the before commensativity of disregenceirs to be becaught to the attention of the outhort. north point: Ν \bigoplus

e reception@moscapserras.com.au w www.moscapserras.com.au

notes:

Revision	Description	Dy	Date
Pő	Prelminary	GH	15/08/
P7	Pre-DA	GH	17/08/
P11	Preliminary Consultant Issue	MA	17/01/1
P12	Preliminary Consultant Issue	50	17.10.1
P13	Pre-DA Issue	50	05.11.1
P14	Pre-DA Issue	50	04.06.1
P17	Preliminary Consultant Issue	MR	09.05.1
P18	Preliminary Consultant Issue	50	20.05.1
P19	Prelminary Consultant Issue	50	22.05.1
P22	Preliminary Consultant Issue	50	04.06.1

on	Description	Dy	Date
	Preliminary	GH	15/08/17
	Pre-DA	GH	17/08/17
	Preliminary Consultant Issue	MA	17/01/18
	Preliminary Consultant Issue	50	17.10.18
	Pre-DA Issue	50	05.11.18
	Pre-DA Issue	50	04.05.19
	Preliminary Consultant Issue	MR	09.05.19
	Preliminary Consultant Issue	50	20.05.19
	Preliminary Consultant Issue	50	22.05.19
	Preliminary Consultant Issue	58	04.05.19

dowing the Section A social 12018 A1 project architect pipe no. 14028 dowing no.

Roof vRL 86,800		Roof
Level 25 _{vRL 84,200}		Level 25RL 84,200
Level 24 vRL 81,150		Level 24RL 81,150
Level 23 vRL 78,100		Level 23 gRL 78,100
Level 22 v RL 75.050		Level 22 gRL 75,050
Level 21 vRL 72.000		Level 21 RL 72.000
Level 20 vRL 68,950		Level 20 x RL 68,950
Level 19 vRL 65.900		Level 19 v RL 65.900
Level 18 - B TRI 62 850		Level 18 - B RI 62 850
Level 17 RI 59 200		Level 17
		v. 16 v. 16 750
		Level 15 FL 53 700
		Level 14-A EL 50,500
		Level 12 44 550
		QRL 44,550
		QRL 41,500
		RL 38,450
		ZRL 35,400
		RL 32,350
Level / vRL 29,300.		Level /RL 29,300
Level 6 😾 RL 26,250		Level 6RL 26,250
Level 5 _{vRL 23,200}		Level 5 g RL 23,200
Level 4 vRL 20,150		Level 4RL 20,150
Level 3		Level 3RL 17,100
Level 2 vRL 14,050		Level 2RL 14,050
Level 1 vRL 11,000 C O L U M B I A	PPER - PLANNE	Level 1RL 11,000 D
LANE OPEN SPACE ST Ground. VRL7,000	REET OPEN SP/	Ground. ZRL 7,000
Basement 1 - PL 3 000		Basement 1- PL 3 000
Basement 2 = 0		Basement 2 PL 0
Basement 3		Basement 3 PL -3 000
Basement 4		Basement 4

2: PGH Bricks 'Macarthur Mix Linear' Podium feature facade

4: 4: Horizontal interlocking colorbond panel cladding - Basalt Level 4&5 Podium Facade

44.2 8: Duralloy paperbark satin powdercoat finish Metrix group riverstone screen External screens

9: Light grey powdercoat finish Aluminium door & window frames

10: Glazing 'Grey Laminated' Windows, doors & balustrades

project		EVELOPM	ENT			
location 11-17 Columbia Lane, HOMEBUSH						
client		Columbina Lane Development Pty. Ltd				
drawing) title	Section B				
scale	1:250 @ A1	project architect	SP / GK	drawn	G	

 this drawing is capyright and the property of the outhor, and find not presistance checked and without the outhorty in constraints and checked and without the outhorty larger scale drawing and without memorism take preference. I do not scale term drawing and stramenian to be checked on site balance commensament of adam. north point: key plan: Ν \bigoplus

 \bigcirc

reception@moscapserras.com.au
 www.moscapserras.com.au

notes:

Section B 1:250

Period Operating O	Revision	Description	Dy	Date
PP 0AA Gal 17.00FT Periodrog Candidat have MA 17.00FT P12 Periodrog Candidat have AD 15.01FT P12 Periodrog Candidat have AD 0.51.51 P13 Periodrog Candidat have AD 0.51.51 P14 Periodrog Candidat have AD 0.51.51 P14 Periodrog Candidat have AD 0.51.51 P14 Periodrog Candidat have AD 0.51.51 P17 Periodrog Candidat have AD 2.55.75	PG	Preliminary	GH	15/08/17
PH Performang-Consultant Name MA 11/20/16 P120 Performang-Consultant Name SR 67.16.18 P120 Performang-Consultant Name SR 62.16.19 P14 Performang-Consultant Name SR 62.16.19 P14 Performang-Consultant Name SR 92.06.19 P15 Performang-Consultant Name SR 92.05.19 P15 Performang-Consultant Name SR 92.05.19	P7	Pre-DA	GH	17/08/17
P1P Penkinary Consultant Issue 38 47.6.54 P1P PencKhama 39 55.1.51 P1P PencKhama 50 56.5.1.91 P1P Penchware 50 56.5.1.91 P1P Pencinary Consultant Issue 400 56.5.1.91 P1P Pencinary Consultant Issue 38 26.6.19	P11	Preliminary Consultant Issue	MA	17/01/18
P13 PseQA Issue SB 55.1.18 P14 PseQA Issue SB 60.6.19 P17 Pselinitary Consulted Issue MR 60.6.21 P18 Pselinitary Consulted Issue MR 60.6.21 P18 Pselinitary Consulted Issue SB 20.65.19	P12	Preliminary Consultant Issue	50	17.10.18
P14 Pte-DA Issue S2 04.05.19 P17 Pteliminary Consultant Issue MR 09.05.19 P18 Pseliminary Consultant Issue S8 20.05.19	P13	Pre-DA Issue	50	05.11.18
P17 Preliminary Consultant Issue MR 09.05.19 P18 Preliminary Consultant Issue SB 20.05.19	P14	Pre-DA Issue	50	04.05.19
P18 Preliminary Consultant Issue 58 20.05.19	P17	Preliminary Consultant Issue	MR	09.05.19
	P18	Preliminary Consultant Issue	50	20.05.19
P19 Preliminary Consultant Issue 58 22:05:19	P19	Preliminary Consultant Issue	50	22.05.19

			11 17 0010
	client		Columbing
nna	drawing	title	Section B
	scale	1:250 @ A1	project architect
	job no.	14028	drawing no.
sca pserras architects			·

m

Appendix C – Borehole Logs & Laboratory Results (STS, 2019a)

Client: Co Project:	olumbia Land	e Development F mbia Lane, Hom	Project: 21024 / 7145C ebush Date - 04/07/2016	BO	REHOLE NO.:	BH 1
Location:	Refer to Dra	awing No. 19/13	15 Logged: MG		Sheet 1 of 3	
W A T T A E B R L E	S A M L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S1		SILTY GRAVELLY SAND: dark grey, fine to coarse grained	SP		D
	@ 0.2 m S2 @ 0.4 m SPT 0.5-0.95 m 4, 8, 8 N=16 S3 @ 0.7 m SPT	1.0	GRAVELLY SILTY SAND: dark grey, fine grained FILL GRAVELLY SANDY SILTY CLAY: red brown with brown and grey, some glass/ash/concrete	CL		D
	1.5-1.95 m		FILI			
	4, 3, 6 N=11 S4 @ 1.7 m	2.0	SILTY SANDY CLAY: pale grey and mottled orange, low plasticity, MC <pl pp="">600</pl>	CL	STIFF	D-M
	S5 @ 3.2 m SPT 3.0-3.45 m 5. 5. 10	3.0	SANDY SILTY CLAY: pale grey and mottled orange, medium plasticity, MC>PL PP = 120	CL	FIRM TO STIFF	VM
	N=15 SPT 4.5-4.95 m 4, 7, 11 N=18	4.0	GRAVELLY SILTY CLAY: orange and red with mottled grey, medium to high plasticity, ironstone gravel, MC=PL	СН	STIFF TO VERY STIFF	М
		5.0	SILTY CLAY: dark grey with mottled orange, high plasticity, MC=PL PP = >600	СН	HARD	D-M
			WEATHERED SHALE: dark grey		EXTREMELY LOW STRENGTH	D
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	Terratest	L
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Equipment Hole Diam Angle fron	: Hydropower Scout eter (mm): 100 h Vertical (°) 0	

SMEC	C Test	ing Se	ervices Pt	y Ltd													GE	OTE	CH	INIC	AL LOG - CORED BOREHOLE
Client:	Colu	umbia L	ane Develop	ment Pty Limited	Projec	ct / S	TS N	o.: 2	1024	4/714	5C									BORI	EHOLE NO.: BH 1
Project:	: II-I	/ Colum	abia Lane, H	ul 315	Date :	: ed:	04 M(4/0// 7	2016)			Ch	ecke	d By:	MG				Sheet	2 of 3
DR	RILLIN	NG	wing No. 19	MATERIAL STR	ENGT	H	WIC	1						ICCKC	а Бу.	MO			DI	SCO	NTINUITIES
						I	Estin	nated	Roo	ck St	reng	th		Jo	oint S	spaci	ng (m	m)			
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0	40	100) 30	0 10	00	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N M L C O R I N G	100%	100%		START CORING AT 6.0 M For non cored details, refer to non cored log WEATHERED SHALE: pale grey, laminations	Fr																6.15 m, Sm, 0 deg, clay, 10mm
Notes:				See explanation sheets for meaning of all	descript	ive ter	ms ar	nd syn	nbols												Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

SMEC Testing Servic	es Pty Ltd										GEOTEO	CHNIC	CAL LOG - CORED BOREHOLE
Client: Columbia Lane D	evelopment Pty Limited	Project	t / ST	'S No	o.: 2	1024	1/714	5C				ROP	EHOLE NO.: BH 1
Project: 11-17 Columbia La	nne, Homebush	Date :		04	/07/2	2016							
Location: Refer to Drawing N DRILLING	Io. 19/1315 MATERIAL STRE	Logged ENGTH	d: H	MG						Checked By:	MG	Shee	t 3 of 3 NTINUITIES
DRILLING			Es	stim	ated	Roc	k Str	engt	h	Joint S	Spacing (mm)		
Recovery Water Method	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20 40		0 Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N 100% 100% M 100% 100% L . . C . . H . . L . . L . . L . . L <	WEATHERED SHALE: dark grey with pale grey, laminations	Fr											12.05 m, Jt, 70 deg, PI, Sm
Neter	I												Contractory Torrets 1
Notes:	See explanation sheets for meaning of all	descriptiv	/e tern	ns and	d sym	bols							Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

Client: C Project:	olumbia Land	e Development F mbia Lane, Hom	tty Limited Project: 21024 / 7145C ebush Date - 04/07/2016	BO	REHOLE NO.:	BH 2
Location:	Refer to Dra	awing No. 19/13	15 Logged: MG		Sheet 1 of 4	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			ASPHALTIC CONCRETE: to 25 mm	CL/CD		D
	S6 @ 0.3 m SPT 0.5-0.95 m 3, 5, 3 N = 8 S7		GRAVELLY SILTY SANDY CLAY: grey brown, medium plasticity, concrete/brick/glass/road base	CI/SP		D
	@ 0.6 m		SANDY SILTY CLAY: orange and mottled grey, MC>PL	СН	FIRM TO STIFF	М
	S8 @ 1.2 m SPT 1.5-1.95 2, 3, 3 N=6		PP = 100			
			SANDY CLAY: pale grey with mottled orange, low to medium plasticity	CI	FIRM	VM
WT	S9 @ 3.0 m SPT 3.0-3.45	2.0	YY = 70			
	1, 3, 13 N = 16		GRAVELLY SILTY CLAY: red brown and mottled grey, medium to high plasticity, MC>PL	СН	STIFF TO VEPN STIFF	W
	SPT 4.5-4.95 m 11, 8, 9	4.0	PP = 400			
	IN - 17	5.0	WEATHERED SHALE: brown and dark grey		EXTREMELY LOW STRENGTH	D
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	: Terratest	1
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT)	Equipment	: Hydropower Scout	
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	eter (mm): 100	
				Angle from	n Vertical (°) 0	

Client: C Project:	Columbia Lan 11 - 17 Colu	e Development I mbia Lane, Horr	Pty Limited nebush	Project: 21024 / 7145C Date : 04/07/2016		BO	REHOLE NO.:	BH 2
Location:	Refer to Dra	awing No. 19/13	15	Logged: MG			Sheet 2 of 4	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plasti	DRILLED PRODUCT city, minor components, observations)		S Y M B D L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	SPT 6.0-3.35 6, 11, >25		WEATHERED SHALE: brown to dark grey				EXTREMELY LOW STRENGTH	D
	N = >36	7.0	BOREHOLE DISCONTINUED AT 6.4 M For cored details, refer to cored log sheet					
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample free water	B - bulk sample N - Standard Penetration Test (SPT)	Contra Equipr	ctor: nent	: Terratest : Hydropower Scout	
			See explanation sheets for meaning of all descriptive	ve terms and symbols	Hole E Angle)iam from	eter (mm): 100 n Vertical (°) 0	

SMEC	Test	ting S	ervices Pt	y Ltd													GE	ΟΤΙ	ECI	INI	CAL LOG - CORED BOREHOLI
Client:	Col	umbia I	ane Develop	oment Pty Limited	Proje	ct / S	TS N	lo.: 2	2102	4/714 -	5C									BOR	EHOLE NO.: BH2
Project:	11-1	7 Colur	nbia Lane, H	omebush	Date	: 	04	4/07/ ¬	2010	5			Ch	1	D 7	MC.				Shar	t 2 of 1
DR		r to Dra	wing No. 19/	MATERIAL STR	ENGT	ea: H	M	J					Cn	ескес	ву: г	MG			D	ISCO	NTINUITIES
DI						I	Estin	nated	l Ro	ck St	reng	th		Jo	int Sr	oacii	ıg (n	nm)	D		
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0	40	100	31	0 1	000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coatin shape, roughness, thickness, other)
				For non cored details, refer to non cored log sheet START CORING AT 6.4 M																	
				WEATHERED SHALE: dark grey with grey	Ew																6.71 m, Sm, Cy, 10 mm 9.61 m, Sm, Cy, 5 mm
N					Fr																
M L C O R I N G																					7.00 m, HB 7.20 m, HB 7.44 m, HB 7.75 m, HB 7.88 m, Sm, Ew, 30mm
			8.0																		8.10 m, HB 8.22 m, HB 8.52 m, HB 8.86 m, Pt, 0 deg, Pl, Ro 8.90 m, Pt, 0 deg, Pl, Ro
			9.0																		9.28 m, Jt, 2 deg, Pl, Ro 9.55 m, Pt, 0 deg, Ro 9.89 m, Pt, 0 deg, Pl, Ro
																					10.08-10.11 m, Jt, 4 deg, Pl, Ro 10.21-10.29 m, Cz, veneer 10.31 m, Pl, 0 deg, Pl, Ro 10.39 m, Pl, 0 deg, Pl, Ro 10.75-10.78 m, Jt, Ir, Ro 10.76-10.83 m, Jt, 85 deg, Ir, Ro 10.99-11.08 m, Jt, Ir, Ro, Fractured
																					11.29-11.32 m, Jt, Ir, Ro 11.53 m, Pt, 0 deg, Pl, Sm 11.69 m, Jt, 0 deg, Pl, Ro, Cy veneer 11.76 m, Pt, 0 deg, Pl, Sn 11.85 m, Pt, 0 deg, Pl. Pw
otes:				See and anothing about the moust of the	decorie				mbs1			<u> </u>								<u> </u>	Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

SME	C Test	ting So	ervices Pt	y Ltd												GI	EOTE	ECI	INIC	AL LOG - CORED BOREHOLE
Client:	Col	umbia L	ane Develop	ment Pty Limited	Projec	t / S	TS N	o.: 2	1024	4/714	5C								BOR	EHOLE NO.: BH 2
Project	: 11-1	7 Colun r to Droi	ibia Lane, H	omebush	Date :	.du	04 MG	1/07/2 2	2016	,			Ch	aalrad	D M	G			Sheet	A of A
DEatio	ni. Keie	NG	ang ino. 19/	MATERIAL STRE	NGT	a: H	MC	,					Cn	ecked	у: М	J		D	ISCO	NTINUITIES
						ŀ	Estim	ated	Roc	k Sti	engt	h		Joi	nt Spa	cing (mm)			
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0 4	10 1	00 1	300 10	000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
E N M L C				WEATHERED SHALE: dark grey with grey	ring Fr	ly Low	Low		ium		High	ly High								Description, orientation, infilling, or coating, shape, roughness, thickness, other)
Notes:																				Contractor: Terratest Equipment: Hydropower Scout
																				Hole Diameter (mm):
																				Angle from Vertical (°):
				See explanation sheets for meaning of all c	lescripti	ve ter	ms an	d syn	ibols											

Client: C Project:	olumbia Land	e Development I mbia Lane, Hom	Project: 21024 / 7145C ebush Date : 05/07/2016	BO	REHOLE NO.:	BH 3
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of 4	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S10/11/12 @ 0.2 m		ASPHALTIC CONCRETE: to 40 mm CLAYEY SILTY SAND: light brown, fine grained, low plasticity, occasional gravel	CL		D
	© 0.2 m S13 @ 0.6 m SPT 1.0-1.45 m		PP = 50 FILL	01		D
	3, 3, 5 N=8	1.0	SILTY CLAY: light grey with orange brown, dark grey and red brown, medium to high plasticity, traces of gravel PP = 400	CL/CH		М
	614		FILL FILL FILL FILL FILL FILL FILL FILL	CL/CU		м
	@ 1.8 m @ 1.8 m SPT 2.5-2.95 5, 6, 8 N=14 SPT 4.0-4.30 10 22 R	2.0	PP = 350 WEATHERED SHALE: dark grey and brown with light grey, clay seams		EXTREMELY LOW	D
	10, 22, R	5.0	WEATHERED SHALE: dark grey and brown with light grey, clay seams		EXTREMELY LOW STRENGTH	D
			· · · · · · · · · · · · · · · · · · ·			
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample B - bulk sample Cc free water N - Standard Penetration Test (SPT) Ec See explanation sheets for meaning of all descriptive terms and symbols H	ontractor: juipment ole Diam ngle from	: Terratest : Hydropower Scout eter (mm): 100 i Vertical (°) 0	

Client: Columbia Lane Development Pty Limited Pro Project: 11-17 Columbia Lane, Homebush Dar Location: Refer to Drawing No. 19/1315 Log DRILLING MATERIAL STRENC C C C C C C C C C C C C C C C C C C C	roject ate : ogged GTH Weathering	/ ST:	S No 05, JK stima	o.: 21 /07/2	024 016	/714:	5C engt		Ch	necke	d By	: MG			DI	BORE Sheet	2 of 4
Project: 11-17 Columbia Lane, Homebush Dai Location: Refer to Drawing No. 19/1315 Log DRILLING MATERIAL STRENC Material Strength Material Strength Material Strength Material Strength Material Strength	ate : ogged GTH Weathering	E Extremely Lov	JK JK stima	ated	Roc	k Str	engt	L.	Ch	necke	d By	: MG			DI	Sheet	2 of 4
DRILLING MATERIAL STRENC	GTH	Extremely Lov	stima Very	ated	Roc	k Str	engt	L.		ICCKC	uБу	. WO			DI	SCO	
Me Dept Rock Type	Weathering	Es Extremely Lov	very	ated	Roc	k Str	engt	l.	-						DI	oco.	VIINUITIES
Me Dept Rock Type	Weathering	Extremely Lov	Very				1	n		J	oint S	Spaci	ng (n	ım)			
Image: Structure & Minor Components) Image: Structure & Minor Components)		×	Low	Low	Medium	High	Very High	Extremely High	2	20	40	100) 30	0 10	00	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
10																	
N WEATHERED SHALE: dark grey with light grey Mw	w	Τ									T			-			5.60-6.14 m, Cz + Cy,
M																	
																	_
C Notes:																	Contractor: Terratest
studes.	minting	e term	15 and	1 cum													Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

SMEC	C Tes	ting S	ervices Pt	ty Ltd												0	GEO	ТЕС	HNI	CAL LOG - CORED BOREHOLE
Client:	Col	lumbia I	ane Develop.	oment Pty Limited	Proje	ct / S'	TS N	lo.: 2	2102	4/714	5C								BOI	REHOLE NO.: BH 3
Project:	: 11-1	7 Colur	nbia Lane, H	omebush	Date	:	0:	5/07/	2016	5			<i>C</i> .		1.0	MC			C1	at 2 cf 4
Locatio DR	n: Refe	er to Dra	wing No. 19/	MATERIAL STR	Logg ENGT	ed: H	JK						Ch	lecked	d By:	MG		Г	She	ONTINUITIES
						Ī	Estin	ated	Ro	ck St	reng	h		Jo	int S	pacing	g (mm	1)		
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0	40	100	300	1000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
Notes:				WEATHERED SHALE: dark grey with light grey	Fr															6.28 m, Jt, 2 deg, PI, Ro, Cy veneer 6.52 m, Jt, 12 deg, Ir, Ro, minor Cy 6.69 m, Pt, 0 deg, PI, Ro
				See explanation sheets for meaning of all	descript	ive ter	ms ar	nd syr	nbols											Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

SMEC Testing	g Services Pt	y Ltd										(GEOTEC	CHNIC	CAL LOG - CORED BOREHOLE
Client: Columb	ia Lane Develop	ment Pty Limited	Projec	t / ST	IS No	o.: 2	1024	1/714:	5C					BOR	EHOLE NO.: BH 3
Project: 11-17 Co	olumbia Lane, Ho	omebush	Date :		05	/07/2	2016								
Location: Refer to I	Drawing No. 19/	1315 MATERIAL STRE	Logge	d: H	JK					_	Checl	cked By: MG	1	Shee	t 4 of 4
Juling				E	stim	ated	Roc	k Str	engt	h		Joint Spacin	g (mm)		
Water Method	Depth (m) Recovery	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20	40 100	300 100	0 Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
		WEATHERED SHALE: dark grey with light grey CORING DISCONTINUED AT 13.0 M	Fr												12.03 m, Pt, 0 deg, Pl, Ro 12.19-12.30 m, Cz + Cy 12.36-12.39 m, Jt, 45 deg, Ir, Ro 12.48-12.93 m, Cz + Cy, Fractured 12.95-13.00 m, Jt, 45 deg, Pl, Sm
Notosi		L													Contractory Torrats-+
Notes:		See explanation sheets for meaning of all	descripti	ve teri	ms and	d sym	bols								Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):
Client: C	Columbia Land	e Development F	ty Limited Project: 21024 / 7145C	BO	REHOLE NO.:	BH 4									
------------------------------------	---	-------------------	---	----------------------------	--	--------------------------------------									
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of 3										
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E									
	S15		ASPHALT: to 20 mm	CW		М									
	@ 0.3 m		SANDY GRAVEL: black, tine grained FILL SILTY CLAY: light brown medium plasticity traces of gravel	GW		M M-VM									
	@ 0.8 m			CL											
	SPT 1.50-1.45 m 2, 2, 1 N = 3 S17 @ 1.2 m		FILL SILTY CLAY: orange brown with light grey, low plasticity, traces of fine grained sand PP = 30	CL		M-VM									
		2.0													
	SPT 2.5-2.95 m 17, 11, 10 N = 21 S18 @ 2.6 m	3.0	GRAVELLY SILTY CLAY: orange brown with red brown an dlight grey, medium to high plasticity, some gravel PP = 200	CL/CH		М									
	SPT 4.0-4.45 m 3, 3, 3 N = 6 S19 @ 4.1 m	4.0	SILTY SANDY CLAY: light grey with orange brown, fine grained sand, medium plaasticity PP = 150	CL		М									
			WEATHERED SHALE: dark grey with dark brown and orange brown, clay seams		EXTREMELY LOW STRENGTH	M-D									
			BOREHOLE DISCONTINUED AT 5.5 M												
			For cored details refer to cored log sheet												
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	: Terratest										
	w 1 - level o	of water table or	rece water N - Standard Penetration 1 est (SP1) See explanation sheets for meaning of all descriptive terms and symbols	Equipment Hole Diam	eter (mm): 100										
				Angle from	n Vertical (°) 0										

SMEC Testing Se	rvices Pty Ltd													GE	OTE	CH	INIC	AL LOG - CORED BOREHOLE
Client: Columbia La	ane Development Pty Limi	ted	Projec	t / ST	rs No	o.: 2	1024	/714	5C								BORE	CHOLE NO.: BH 4
Project: 11-17 Colum	bia Lane, Homebush		Date :	1	06	5/07/2	2016				C1		D 14	-			C1 4	2 2
DRILLING	ving No. 19/1315	MATERIAL STR		a: H	JK						Cn	ескеа	By: M	J		DI	SCO	2 of 5
Dittalia				E	stim	ated	Roc	k Str	engt	h	-	Joi	nt Spa	cing (mm)			
Recovery Water Method	Depth (m) (Colour, Grai	Rock Type n Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	04	0 10	00 3	00 10	00	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
				W						hβ								shape, roughness, thickness, other)
N M L C		IG AT 5.5 M SHALE: dark grey with light grey	Fr/ St															5.50-6.15 m, Numerous Jt/Pt, Ir, Ro, some clay infill, Fractured
C Notes:		See explanation sheets for meaning of all	descripti	ve terr	ms an	d sym	ibols											Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

SMEC	Test	ing So	ervices Pt	y Ltd													G	GEC	ЭТЕ	CHN	ICAL LOG - CORED BOREHOLE
Client:	Col	umbia L	ane Develop	ment Pty Limited	Projec	et / S7	FS N	o.: 2	2102	4/714	5C									во	REHOLE NO.: BH 4
Project:	11-1	7 Colun	ibia Lane, H	omebush	Date :	:	06	5/07/	2016	5			_								
Location DR	: Refe	r to Dra NG	wing No. 19/	1315 MATERIAL STR	Logge	ed: H	JK						Ch	ieck	ed By	: M0	ŕ.		1	She	ontinuities
DR		10		MATERIAL STR		E	stim	ated	l Ro	k St	reng	th		J	oint	Spac	cing (mm))		Old monthes
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	20	40	1(00 3	300	1000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N M L C O R I N G				Standpipe Piezometer Installed	Fr/ St																6.15 m, Jt, 2 deg, PI, Sm 6.29 m, Jt, 2 deg, PI, Sm 6.45 6.50 m, Jt, 50 deg 6.58-7.04 m, Jt, Pt, Ir, Ro, Minor clay (Fractured) 7.43-7.46 m, Jt, 45 deg, PI, Ro 7.43-7.46 m, Jt, 45 deg, PI, Ro 7.93 m, Jt, 0 deg, PI, Ro 7.93 m, Jt, 0 deg, PI, Ro 7.98-8.04 m, Jt, 60 deg, PI, Ro 8.06 m, Jt, 0 deg, PI, Ro 8.09-8.13 m, Jt, 50 deg, Ir, Ro 8.19 m, Jt, 0 deg, PI, Ro 8.24 m, Jt, Ir, Ro 8.30-8.35 m, Jt, PN, Ir, Ro, Clay infill 8.58-8.02 m, Jt, 80 deg, Ir, Ro, Fractured 8.77-8.80, PI, Ir, Ro 8.88-8.95 m, Jt, 20 deg, PI, Ro 9.09-9.11 m, Jt, 20 deg, PI, Ro 9.13-9.14 m, Jt, 15 deg, PI, Ro 9.30-9.31 m, Jt, 20 deg, PI, Ro 9.30-9.55 m, Jt, Ir, Ro 9.86 m, Jt, 0 deg, PI, Ro 10.44-10.16 m, Pt, 0 deg, PI, Ro 10.45-10.50 m, Jt, 5 deg, PI, Ro
				CORING DISCONTINUED AT 11.93 M	1								1								
Notes:		L	<u>.</u>	See explanation sheets for meaning of all	descript	ive ten	ms an	d syn	nbols	1	1	1	1	1						1	Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

Client: C Project:	olumbia Land 11 - 17 Colu	e Development F mbia Lane, Hom	ty Limited Project: 21024 / 7145C ebush Date : 06/07/2016	BO	REHOLE NO.:	BH 5
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of 4	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			CONCRETE: 340 mm thick			
	S20 @ 0.5 m		Gravelly sandy clay, black, fine grained, low plasticity, some gravel	CL		М
	S21 @ 1.0 m SPT 1.0-1.45 m 1, 2, 2 N = 3		FILL SILTY CLAY: light grey and brown with orange brown, medium to high plasticity PP = 30	CL/CH		M
		2.0	SILTY CLAY: orange brown with light grey, medium to high plasticity	CL/CH		М
	SPT 2.5-2.95 m 6, 6, 4 N = 10		SILTY CLAY: light grey with orange brown, medium plasticity, traces of fine sand PP = 250	CL		M
	SPT	3.0				
	4.0-4.45 m 3, 2, 2 N = 4	4.0 5.0	PP = 100			M-VM
	SPT 5.50-5.95 m 12, 8, 11 N = 19		PP = 300 SILTY CLAY: light gray with orange brown and light brown medium to high plasticity, traces of gravel	CI /CH		м
<u> </u>			SILT TOLAT. Ight grey with orange orown and right brown, medium to high plasticity, traces of gravel	CL/CH		IVI
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample B - bulk sample G free water N - Standard Penetration Test (SPT) H See explanation sheets for meaning of all descriptive terms and symbols	Contractor Equipment Hole Diam Angle from	: Terratest : Hydropower Scout eter (mm): 100 n Vertical (°) 0	

Client: O Project:	Columbia Lan 11 - 17 Colu	e Development I mbia Lane, Hom	Pty Limited ebush	Project: 21024 / 7145C Date : 06/07/2016	BC	REHOLE NO.:	BH 5
Location:	Refer to Dr	awing No. 19/13	15	Logged: JK		Sheet 2 of 4	ļ
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF D (Soil type, colour, grain size, plasticit	RILLED PRODUCT ty, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			SILTY CLAY: light grey with orange brown and light b	brown, medium to high plasticity, traces of gravel	CL/CH		М
		7.0	WEATHERED SHALE: dark grey and brown with oran BOREHOLE DISCONTINUED AT 7.0 M	nge brown, clay seams		EXTREMELY LOW STRENGTH	D
			For cored details, refer to cored log sheet				
		8.0					
		9.0					
		11.0					
NOTES:	D - disturbe WT - level	t d sample of water table or	U - undisturbed tube sample free water	B - bulk sample N - Standard Penetration Test (SPT)	Contractor Equipment	: Terratest : Hydropower Scout	<u>I</u>
			See explanation sheets for meaning of all descriptive	terms and symbols	Hole Diam Angle from	neter (mm): 100 n Vertical (°) 0	

SMEC	C Tes	ting S	ervices Pt	y Ltd												0	GEO	DTE	СН	NIC	AL LOG - CORED BOREHOLE
Client:	Col	lumbia I	ane Develop	ment Pty Limited	Projec	ct / S	TS N	o.: 2	1024	4/714	5C									BORI	EHOLE NO.: BH 5
Project:	n Refe	r to Dra	wing No 19/	1315	Logge	: ed·	IK	//0//.	2016)			Ch	ecker	1 Bv	MG			+	Sheet	3 of 4
DR	ILLI	NG	wing itte: 19/	MATERIAL STR	ENGT	H H	511							leenee	I Dy.	MO			DI	SCO	NTINUITIES
						I	Estim	ated	Roo	ek Sti	engt	th		Jo	int S	pacin	g (m	m)	Ī		
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0	40	100	30	0 10	00	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N M L C C O R I N G				For non cored details, refer to non cored log sheet START CORING AT 7.0 M WEATHERED SHALE: dark grey with light grey	Fr/ St																7.00-9.04 m, Numerous Jt/Pt, Ir, Ro, Fractured -minor clay infill -minor clay infill
Notes:																					Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):
				See explanation sheets for meaning of all	descript	ive ter	ms an	ıd syn	ibols												

SMEC Te	esti	ng Se	rvices Pt	y Ltd										GI	EOTEC	HNI	CAL LOG - CORED BOREHOLE
Client: C	Colur	nbia La	ine Develop	ment Pty Limited	Projec	et / S7	rs No	o.: 2	1024	/714:	5C					BOR	EHOLE NO.: BH 5
Project: 11	1-17	Colum	bia Lane, Ho	omebush	Date :		07	/07/2	2016								
Location: Re	efer t	to Draw G	/ing No. 19/	1315 MATERIAL STRE	Logge	:d: H	JK						Chec	ked By: MG	I	Shee	et 4 of 4
DIGE						F	stim	ated	Roc	k Str	engt	h		Joint Spacing (mm)		
Water Method		Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20	40 100 1	800 100	0 Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
				WEATHERED SHALE: dark arey with light grey	Fr											+	12.26 m. Pt. 0 deg. Pl. Ro
N L C				WEATHERED SHALE: dark grey with light grey CORING DISCONTINUED AT 13.00 M	Fr												12.26 m, Pt, 0 deg, PI, Ro 12.55 m, Pt, Ir, Ro 12.63-12.75 m, Jt/Pt, Ir, Ro 12.80-12.92 m, Jt, 0 deg, PI, Ro
																	_
			17.0														
			_														
			_														
			_														
			_														
																	ļ
Notes:				See explanation sheets for meaning of all-	descripti	ve ter	ms an	d sym	bols								Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

Client: C Project:	Columbia Land 11 - 17 Colum	e Development F mbia Lane, Hom	Project: 21024 / 7145C ebush Date : 07/07/2016	BO	REHOLE NO.:	BH 6
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of 4	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	522/22/24		CONCRETE: 160 mm thick CRAVELLY SULTY CLAV, dork brown with groups brown and light group modium plasticity, gone groupl	CI		М
	S22/25/24 @ 0.3 m S25 @ 1.0 m	1.0	GRAVELLY SILLY CLAY: dark brown with orange brown and light grey, meanum plasuchy, some gravel			M
	1.0-1.45 m,	l	FILL SILTY CLAY: light brown and orange brown with light grey and occasional black, medium to high	CL/CH		M-VM
	1, 0, 1 N=1 S26 @ 1.2 m		plasticity			
		2.0	CLAYEY SILTY SAND: orange brown with light grey, fine to medium grained	SC		WET
WT	-					
	SPT					
	2.5-2.95 m 5, 5, 5 N=10		SILTY CLAY: orange brown and orange brown with light grey and occasional black, medium to high plasticity PP = 250	CL/CH		М
		3.0				
	SPT	4.0	SILTY CLAY: light grey with yellow brown and orange brown, medium to high plasticity	CL/CH		М
	4, 5, 6 N=11		PP = 350			
		5.0				
	SPT 5.5-5.95 m 5, 6, 7 N=13 S27 @ 5.6 m					
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample C	Contractor	: Terratest	
	WT - level o	of water table or	Free water N - Standard Penetration Test (SPT)	quipment	: Hydropower Scout	
			See explanation sheets for meaning of all descriptive terms and symbols	lole Diam	eter (mm): 100	
			A	ngle fron	n Vertical (°) 0	

Client:	Columbia Lan	e Development I	Pty Limited	Project: 21024 / 7145C	в	OREHOLE NO.:	BH 6
Location	: Refer to Dr	awing No. 19/13	315	Logged: JK		Sheet 2 of 4	ŀ
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plastic	DRILLED PRODUCT	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			SILTY CLAY: light grey with yellow brown and oran	ge brown, medium to high plasticity	CL/CF		М
			WEATHERED SHALE: dark grey and brown with or	range brown, clay seams		EXTREMELY LOW STRENGTH	M-D
			BOREHOLE DISCONTINUED AT 6.4 M			5 max (6 m	
		7.0	For cored details, refer to cored log sheet				
		11.0					
NOTES:	D - disturbe WT - level	ed sample of water table or	U - undisturbed tube sample free water	B - bulk sample N - Standard Penetration Test (SPT)	Contracto Equipmen	r: Terratest t: Hydropower Scout	
			See explanation sheets for meaning of all descriptiv	re terms and symbols	Hole Diar	neter (mm): 100	
					Angle from	n Vertical (°) 0	

SMEC	C Tes	ting S	ervices Pt	ty Ltd											GEOTEC	HNI	CAL LOG - CORED BOREHOLE
Client:	Col	umbia I	ane Develop	oment Pty Limited	Projec	et / S	TS N	o.: 2	1024	4/714	5C					BOR	EHOLE NO.: BH 6
Project:	11-1	7 Colur	nbia Lane, H	omebush	Date :		07	/07/2	2016)			C^1	aal '	Bui MG	She	t 3 of 1
Locatio DR	n: Refe	r to Dra	wing No. 19/	MATERIAL STR	ENGT	ea: H	JK						Cn	ескеа	EBY: MG	ISCO	ntinuities
						I	Estim	ated	Roo	ck Sti	rengt	th		Jo	int Spacing (mm)	1	
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0 ·	40 100 300 1000	Visual	Additional Data (Joints, partings, scams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N M L C O R I N G G				For non cored details, refer to non cored log sheet START CORING AT 6.4 M WEATHERED SHALE: dark grey with light grey	Fr												6.40 m, Jt, 0 deg, Pl, Ro 6.41 m, Jt, 0 deg, Pl, Ro 6.42 m, Jt, 0 deg, Pl, Ro 6.50 m, Jt, 0 deg, Pl, Ro 6.62 m, Jt, 0 deg, Pl, Ro 6.63 m, Jt, 0 deg, Pl, Ro 6.77 m, Jt, 0 deg, Pl, Ro 6.89 m, Jt, 0 deg, Pl, Ro 7.18 m, Pt, 0 deg, Pl, Ro 7.37 m, Pt, 0 deg, Pl, Ro 7.38 m, Pt, 0 deg, Pl, Ro 7.38 m, Pt, 0 deg, Pl, Sm 7.38 m, Pt, 0 deg, Pl, Sm 7.38 m, Pt, 0 deg, Pl, Sm 8.03 m, Pt, 0 deg, Pl, Sm 8.30-8.36 m, Jt, 70 deg, Ir, Ro 8.30-8.36 m, Jt, 70 deg, Ir, Ro 8.30-8.36 m, Jt, 70 deg, Ir, Ro 8.58 m, Pt, 0 deg, Pl, Sm 8.81 m, Pt, 0 deg, Pl, Sm 9.90 m, Pt, 0 deg, Pl, Sm 9.90 m, Pt, 0 deg, Pl, Sm 9.90 m, Pt, 0 deg, Pl, Sm 9.96 m, Pt, 0 deg, Pl, Sm 10.08 m, Pt, 0 deg, Pl, Sm 10.38 m, Pt, 10 deg, Pl, Sm 10.90-11.17 m, Jt, 85 deg, Ir, Ro 11.23-11.63 m, Jt, 90 deg, Ir, Ro 11.39 m, Jt, 0 deg, Pl, Sm 11.39 m, Jt, 0 deg, Pl, Sm
																	Equipment: Hydropower Scout
																	Hole Diameter (mm):
																	Angle from Vertical (°):
				See explanation sheets for meaning of all	descript	ive ter	ms ar	ıd syn	nbols								

SME	C Test	ting Se	ervices Pt	y Ltd									GEOT	ECHN	NICAL LOG - CORED BOREHOLE
Client:	Col	umbia L	ane Develop	oment Pty Limited	Projec	et / S7	ΓS No	o.: 2	1024	/714	5C			В	OREHOLE NO.: BH 6
Project	t: 11-1	7 Colum	ibia Lane, H	omebush	Date :	d.	07	/07/2	2016				Chashed Pro MC	-	Theat A of A
DI	on: Kefe	I to Drav	wing No. 19/	MATERIAL STRE		:u: H	JK.						Checkea By: MG	DISC	CONTINUITIES
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Lov	Uery Low	ated Low	Roc Medium	k Str High	engt Very High	Extremely Hig	Joint Spacing (mm) 20 40 100 300	000	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shane, rouehness, thickness, other)
Method N M L C	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components) WEATHERED SHALE: dark grey with light grey BOREHOLE DISCONTINUED AT 13.0 M	Veathering Fr	Extremely Low	Very Low	Low	Medium	High	Very High	Xnrennely High			Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other) 12.16 m, Pt, 0 deg, PJ, Sw
Notes:															Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):
				See explanation sheets for meaning of all	descripti	ive ter	ms an	d sym	bols						

Client: C	Columbia Land	e Development F mbia Lane, Hom	Project: 21024 / 7145C ebush Date : 08/07/2016	BO	REHOLE NO.:	BH 7
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of 4	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S28		CONCRETE: to 140 mm SILTY CLAY: light brown with orange brown, medium plasticity	CL		M-VM
	@ 0.2 m					
	CDT		SILTY CLAY: red brown and orange brown with light grey, medium to high plasticity	CL/CH		М
	SP1 1.0-1.45 m 3, 4, 5 N=9 S29 @ 1.2 m	1.0	PP = 350			
	0		SILTY CLAY: light grey with red brown, medium to high plasticity, occasional gravel	CL/CH		М
		2.0				
	SPT					
	2.5-2.95 m 5, 6, 8 N=14		PP = 380			
		3.0	SILTY CLAY: light grey with orange brown, medium plasticity, traces of gravel	CL		M-D
	SPT 4.0-4.30 m 8, 22	4.0				
	N=22+		WEATHERED SHALE: light grey and dark grey with brown and orange brown, clay seams		EXTREMELY LOW STRENGTH	D
		5.0				
			BOREHOLE DISCONTINUED AT 5.5 M			
			For cored details, refer to cored log sheets			
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	: Terratest	
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT)	Equipment	: Hydropower Scout	
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam Angle from	eter (mm): 100 n Vertical (°) 0	

SME	C Test	ting Se	ervices Pt	y Ltd												(GEO	OTE	СН	INIC	AL LOG - CORED BOREHOLE
Client:	Col	umbia L	ane Develop	ment Pty Limited	Projec	t / S7	rs N	o.: 2	1024	/714	5C									BORI	CHOLE NO.: BH 7
Project	: 11-1 	7 Colum	bia Lane, H	omebush	Date :	d.	08	3/07/2	2016				Ch	aalrad	D	MG				Sheet	2 of 4
DF	RILLI	NG	-ing 180, 19/	MATERIAL STRE	NGT	u. H	лĸ							icered		UIN			DI	SCO	NTINUITIES
						E	stim	ated	Roc	k Str	engt	h		Jo	int Sp	oacin	ıg (m	m)			
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	.0 ·	40	100	30	0 10	00	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
				For non cored details, refer to non cored log sheet																	
N				WEATHERED SHALE: dark grey with light grey and	Sw						-					T					5.64-7.13 m, Numerous Jt/Pt, 0-90, Ir, Ro,
М				orange brown																	Clay in <u>fill</u>
L			_												1						_
C Notes:				I									I								Contractor: Terratest
Notes:				for male of the data of the				4.													Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):
				See explanation sheets for meaning of all d	escripti	ve ter	ms an	d syn	ibols												

SMEC	C Test	ting So	ervices Pt	y Ltd												GE	OTE	CF	INIC	AL LOG - CORED BOREHOLE
Client:	Col	umbia L	ane Develop	ment Pty Limited	Projec	t / S7	FS No	o.: 2	1024	1/714	5C								BORI	EHOLE NO.: BH 7
Project:	11-1	7 Colun	ibia Lane, Ho	omebush	Date :	а.	08	/07/2	2016				Ch	11	D M(_			Shoot	2 of 4
DR	n: Refe	r to Drav	wing No. 19/	MATERIAL STR	ENGT	a: H	JK						Cn	ескеа	By: MC	J		DI	SCO	S OI 4
						E	stim	ated	Roc	k Str	engt	h		Joi	nt Spac	ing (i	nm)			
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0 4	0 10	00 3	00 10	00	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N M C O R I N G				WEATHERED SHALE: dark grey with light grey and orange brown WEATHERED SHALE: dark grey with light grey	Fr															7.32-7.38 m, Jt, Ir, Ro 7.56 m, Pt, 2 deg, PI, Sm 7.78 m, Pt, 4 deg, PI, Sm 7.78 m, Pt, 4 deg, PI, Sm 7.95 m, Jt, 0 deg, PI, Ro 8.19 m, Jt, 0 deg, PI, Ro 8.31-8.34 m, Jt, Ir, Ro 8.63 m, Jt, 0 deg, PI, Ro 9.08 m, Jt, 0 deg, PI, Ro 9.10 - 9 m, Pt, 0 deg, PI, Sm 10.19 m, Pt, 0 deg, PI, Sm 10.19 m, Pt, 0 deg, PI, Sm 10.19 m, Pt, 0 deg, PI, Sm 10.31 m, Jt, 0 deg, PI, Sm 10.44 m, Pt, 0 deg, PI, Sm 10.79 m, Pt, 0 deg, PI, Ro 11.73 m, Pt, 0 deg, PI, Ro 11.73 m, Pt, 0 deg, PI, Ro 11.80 m, Pt, 0 deg, PI, Ro 11.80 m, Pt, 0 deg, PI, Ro
																				Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):
				See explanation sheets for meaning of all	descripti	ve teri	ms an	d sym	bols											o ().

SMEC	C Test	ing Se	ervices Pt	y Ltd												G	GEO	TEC	H	NIC	AL LOG - CORED BOREHOLE
Client:	Colu	umbia L	ane Develop	ment Pty Limited	Projec	et / S7	FS N	o.: 2	1024	/714:	5C								в	ORI	HOLE NO.: BH 7
Project:	11-17	7 Colum	bia Lane, Ho	omebush	Date :		08	/07/2	2016												
Locatio	n: Refe	r to Drav	ving No. 19/	1315	Logge	d:	JK						Ch	necked	By: N	IG			5	heet	4 of 4
DR	ILLIF	NG		MATERIAL STRE	INGT	H F	stim	ated	Roc	k Str	enat	h		Ia	int Sn.	ain	. (<u>,</u>	DIS	CO	IIINUITIES
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	20	40 1		300	100	0	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
N M L C O R I N G				WEATHERED SHALE: dark grey with light grey CORING DISCONTINUED AT 13.28 M Standpipe Piezometer Installed	Fr																3.5.0,PC, Forganess, Mickinss, Olicity 12.37 m, Pt, 0 deg, Pl, Ro 12.92 m, Jt, Ir, Ro 12.95 m, Jt, Ir, Ro 13.02 m, Jt, 0 deg, Pl, Ro 13.11 Pt, 0 deg, Pl, Ro 13.15 m, Pt, 0 deg, Pl, Ro 13.35 m, Pt, 0 deg, Pl, Ro
Notes:					1	I	<u> </u>							<u> </u>	<u> </u>			1	1		Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm):
																					Angle from Vertical (°):
				See explanation sheets for meaning of all	descripti	ve ter	ms an	d sym	ibols					_	_						

Client: C	Columbia Land	e Development F mbia Lane, Hom	Project: 21024/7145C	BO	REHOLE NO.:	BH 8
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of	1
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S30		CONCRETE: to 100 mm GRAVELLY SILTY CLAY: dark grev with dark brown and light grev, low plasticity, some gravel	CL		М
	@ 0.2 m		FILL SILTY CLAY: light brown and orange brown with light grey, medium to high plasticity	CL/CH		M
	@ 0.6 m					
	SPT 1.0-1.45 m 2, 3, 4 N=7					
		2.0	SILTY CLAY: red brown with light grey and orange brown, medium to high plasticity	CL/CH		М
	SPT		SILTY CLAY: light grey with orange brown and red brown, medium to high plasticity	CL/CH		М
	2.52.55 m 5,6,7 N=13 S32 @ 2.6 m	3.0	PP = 250			
	SPT 4.0-4.45 m 3,4,5 N=9	4.0	PP = 280			
	S33 @ 5.2 m	5.0	SILTY CLAY: light grey with dark grey and orange brown, medium plasticity, traces of gravel	CL		M-D
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	: Terratest	
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT)	Equipment	: Hydropower Scout	
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	eter (mm): 100	
				Angle from	n Vertical (°) 0	

Client: C Project:	Columbia Lan	e Development I mbia Lane, Hom	ty Limited ebush	Project: 21024 / 7145C Date : 11/07/2016	В	OREHOLE NO.:	BH 8
Location:	Refer to Dr	awing No. 19/13	15	Logged: JK		Sheet 2 of 4	
W A T T A E B R L E	S A M P L E S	DEPTH	DESCRIPTION OF DRILL (Soil type, colour, grain size, plasticity, min	JED PRODUCT	S Y M B O	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R F
	3	(111)	SILTY CLAY: light grey with dark grey and orange brown, n	medium to high plasticity, traces of gravel	CL		M-D
			WEATHERED SHALE: dark grey, clay seams BOREHOLE DISCONTINUED AT 6.6 M			EXTREMELY LOW STRENGTH	D
		7.0	For cored details, refer to cored log sheet				
		11.0					
NOTES:	D - disturbe WT - level o	ed sample	U - undisturbed tube sample B - b free water N - S	bulk sample Standard Penetration Test (SPT)	Contracto Equipmer	r: Terratest it: Hydropower Scout	<u> </u>
			See explanation sheets for meaning of all descriptive terms	and symbols	Hole Dia	neter (mm): 100	
					Angle fro	m Vertical (°) 0	

SMEC	C Test	ing So	ervices Pt	y Ltd												0	GEC)TE	CF	INIC	AL LOG - CORED BOREHOLE
Client:	Col	umbia L	ane Develop	ment Pty Limited	Projec	et / S	TS N	io.: 2	1024	4/714	5C									BORI	EHOLE NO.: BH 8
Project:	11-1 	7 Colun	ibia Lane, H	omebush	Date :	. 1.	1	1/07/.	2016				Cl	11	D M	C				Shoot	2 of 1
DR		r to Drav	wing No. 19/	MATERIAL STRE	Logge	ea: H	JK						Cn	тескеа	By: M	G			DI	SCO	
						F	Estin	nated	Roc	k Sti	reng	th		Joi	nt Spa	icin	g (m	m)		.500	
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	20 4	0 1	.00	30	0 10	000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
				For non cored details, refer to non cored log sheet START CORING AT 6.65 M WEATHERED SHALE: dark grey with light grey	Fr																6.66 m, Jt, 0 deg, Pl, Ro
N L C O R I N G																					0.01 m, Pt, 0 deg, Pt, Ro 6.75 m, Jt, 0 deg, Pt, Ro, Cy 6.77 m, Jt, 0 deg, Pt, Ro, Cy 6.87 m, Jt, 0 deg, Pt, Ro, Cy 6.87 m, Jt, 0 deg, Pt, Ro, Cy 7.07 m, Jt, 0 deg, Pt, Ro, Cy 7.07 m, Jt, 0 deg, Pt, Ro, Cy 7.15 m, Jt, 0 deg, Pt, Ro, Cy 7.24 m, Jt, 0 deg, Pt, Ro 7.25 m, Jt, 0 deg, Pt, Ro 7.35 m, Jt, 0 deg, Pt, Sm 7.36 m, Jt, 0 deg, Pt, Sm 7.95 m, Jt, 0 deg, Pt, Sm 8.14 m, Jt, 0 deg, Pt, Sm 8.50 m, Jt, 0 deg, Pt, Sm 8.70 m, Pt, 0 deg, Pt, Ro 8.70 m, Pt, 0 deg, Pt, Sm 9.20 m, Pt, 0 deg, Pt, Sm 9.35 m, Jt, 0 deg, Pt, Sm 9.36 m, Pt, 0 deg, Pt, Sm 9.36 m, Pt, 0 deg, Pt, Sm 9.36 m, Pt, 0 deg, Pt, Sm 9.37 m, Pt, 0 deg, Pt, Sm 10.13 m, Pt, 0 deg, Pt, Sm 11.23 m, Pt, 0 deg, Pt, Sm 11.42 m, Jt, 0 deg, Pt, Ro 11.42 m, Jt, 0 deg, Pt, Ro
Notre				1		L															Contractor: Torrata+
Notes:				See explanation sheets for meaning of all	descripti	ive ter	ms ar	nd syn	nbols												Contractor: Terratest Equipment: Hydropower Scout Hole Diameter (mm): Angle from Vertical (°):

SME	C Test	ing Se	ervices Pt	y Ltd												GE	OTE	CE	INIC	AL LOG - CORED BOREHOLE
Client:	Colı	umbia L	ane Develop	ment Pty Limited	Projec	t / S	FS N	o.: 2	1024	4/714	5C								BORI	EHOLE NO.: BH 8
Project	: 11-1'	7 Colum	bia Lane, H	omebush	Date :		11	/07/2	2016				~			_			C1	4 6 4
Locatio	n: Refer	r to Drav	ving No. 19/	MATERIAL STR	Logge	ed: H	JK.						Ch	lecked	By: M	ŭ		DI	Sco	4 OI 4 NTINUITIES
		10				ŀ	stim	ated	Roc	k Str	engt	h		Joi	nt Spa	cing (I	mm)			
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	2	0 4	0 1	00 3	00 10	000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other)
Ν				WEATHERED SHALE: dark grey with light grey	Fr															12.09 m, Pt, 0 deg, Pl, Sm
М																				12.46 m, Jt, 0 deg, Pl, Ro
L																				12.83 m, Pt, 0 deg, Pl, Ro
C																				
																				_
			13.0	CORING DISCONTINUED AT 12.87 M																
																				—
			_																	_
			14.0																	
																				_
																				_
																				—
			15.0																	
																				_
																				—
			16.0																	
																				—
			-																	_
			17.0																	_
			17.0																	
			_																	_
			-																	_
			_																	
			-																	_
Notes:				1										I	I		1			Contractor: Terratest
																				Equipment: Hydropower Scout
																				Hole Diameter (mm):
																				Angle from Vertical (°):
	-	-	-	See explanation sheets for meaning of all	descript	ve ter	ms an	d syn	ibols									-		

Client: C Project:	Columbia Lan 11 - 17 Colu	e Development F mbia Lane, Hom	Pty Limited ebush	Project: 21024 / 7145C Date : 18/07/2016	В	OREHOLE NO.:	BH 9
Location:	Refer to Dr	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	-
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plasti	DRILLED PRODUCT	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S40		CONCRETE: 130 mm thick	k grav madium to high plasticity traces of graval	CI		м
	@ 0.2 m		SILTY CLAY: light grey with orange brown and dari	k grey, medium to high plasticity, traces of gravel	CL		М
			CONCRETE: 150 mm thick	1	GW		м
	S41 @ 0.8 m	1.0	SAND I ORAVEL. Gaix grey and olack, fine granice		Gw		IVI
	842		SILTY CLAY: light grey and brown with orange bro	FILL wn_medium.plasticity	CL		M-VM
	@ 1.2 m		SILL I CLAT, ngin grey and brown with brange bro	wii, incutum prastieny			101-0101
			BOREHOLE DISCONTINUED AT 1.8 M				
		2.0					
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample free water	B - bulk sample N - Standard Penetration Test (SPT)	Contracte Equipme	or: STS nt: Edson RP70	
			See explanation sheets for meaning of all descriptiv	ve terms and symbols	Hole Dia	meter (mm): 100	
					Angle fro	om Vertical (°) 0	

Client: C Project:	Columbia Land	e Development F mbia Lane, Hom	Pty Limited ebush	Project: 21024 / 7145C	BC	OREHOLE NO.:	BH 9
Location:	Refer to Dra	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF I (Soil type, colour, grain size, plastic	DRILLED PRODUCT ity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			CONCRETE: 450 mm thick				
	S43 @ 0.5 m		SILTY CLAY: orange brown with light grey, medium	to high plasticity	CL/CH	[М
	0						
		1.0	BOREHOLE DISCONTINUED AT 0.8 M				
		2.0					
		3.0					
		4.0					
		5.0					
NOTES:	D - disturbe WT - level c	d sample	U - undisturbed tube sample	B - bulk sample N - Standard Pepetration Test (SPT)	Contractor	:: STS t: Edson RP70	
		, much table of	See explanation sheets for meaning of all descriptive	e terms and symbols	Hole Dian	neter (mm): 100	
					Angle from	n Vertical (°) 0	

Client: C	Columbia Land	e Development I	tty Limited Project: 21024 / 7145C		BO	REHOLE NO.:	BH 11
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK			Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)		S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S49/50/51		CONCRETE: 190 mm thick				
	@ 0.2 m		SILTY CLAY: grey and green with dark grey and orange brown, medium plasticity, traces of gravel		CL		М
	S52 @ 0.7 m		SILTY CLAY: orange brown with light brown, medium plasticity		CL		M-VM
	@ 0.7 m	1.0					
	S57 @ 1.5 m		SILTY CLAY: light grey with red brown and orange brown, medium to high plasticity		CL/CH		М
		2.0	SILTY CLAY: orange brown with light grey, medium to high plasticity		CL/CH		М
NOTES	S58 @ 3.0 m	3.0 4.0 5.0	BOREHOLE DISCONTINUED AT 3.0 M				
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Ec Ho At	uipment: ble Diamongle from	Edson RP70 eter (mm): 100	

Client: C	olumbia Lane	e Development F	Pty Limited	Project: 21024 / 7145C	BC	REHOLE NO.:	BH 12
Location:	Refer to Dra	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plasti	DRILLED PRODUCT city, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S53		CONCRETE: 300 mm thick SILTY CLAY: dark grey with orange brown		CL/CH		M-VM
WT	@ 0.5 m	1.0					
	S59 @ 1.5 m	2.0	SILTY CLAY: red brown with light grey, medium to	high plasticity, traces of gravel	CL/CH		M-VM
	S60 @ 3.0 m	3.0	BOREHOLE DISCONTINUED AT 3.0 M				
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample free water See explanation sheets for meaning of all description	B - bulk sample N - Standard Penetration Test (SPT) ve terms and symbols	Contractor Equipment Hole Diam	: STS :: Edson RP70 ueter (mm): 100	
					Angle fron	n Vertical (°) 0	

Client: C Project:	olumbia Lan	e Development F mbia Lane, Hom	ty Limited	Project: 21024 / 7145C	BC	REHOLE NO.:	BH 13
Location:	Refer to Dra	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W AT TA EB RL E	S A M P L E S	DEPTH (m)	DESCRIPTION OF 1 (Soil type, colour, grain size, plastic	DRILLED PRODUCT	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			CONCRETE: 450 mm thick				
	S54 @ 0.5 m		SILTY CLAY: light grey and green with orange brow	n and dark grey, medium plasticity, traces of gravel	CL		М
		1.0		FILL			
	855 @ 1.5 m	2.0	SILT I CLAT: ngnt brown with orange brown, mediu	in to ingr prasucity	CDCH		IM-V M
	856		SILTY CLAY: orange brown with light grey, medium	to high plasticity	CL/CH		M
	@ 3.0 m	4.0	BOREHOLE DISCONTINUED AT 3.0 M				
		5.0					
NOTES:	D - disturbe	d sample	U - undisturbed tube sample	B - bulk sample	Contractor	: STS	
	WT - level of	of water table or	free water	N - Standard Penetration Test (SPT)	Equipment	:: Edson RP70	
			See explanation sheets for meaning of all descriptiv	e terms and symbols	Hole Diam Angle from	eter (mm): 100 n Vertical (°) 0	
I							

Client: C Project:	Client: Columbia Lane Development Pty Limited Project: 11 - 17 Columbia Lane, Homebush			Project: 21024 / 7145C Date : 19/07/2016		BOREHOLE NO.:	
Location:	Refer to Dra	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRI (Soil type, colour, grain size, plasticity,	LLED PRODUCT minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	861		CONCRETE: 100 mm thick		CD		м
WT	0.2 m	1.0	SAND: yellow brown, fine to medium grained		SP		M/VM
				FILL			WET
	S62/63/64 @ 1.5 m	2.0	SILTT SARAD, dank grey, nike to incomin granica	FILL			
			SILTY CLAY: light grey with orange brown, medium to h	igh plasticity	CL/CH		М
	S65 @ 3.0 m	3.0	BOREHOLE DISCONTINUED AT 3.0 M				
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B	- bulk sample	Contractor	: STS	
	WT - level o	of water table or	free water N	- Standard Penetration Test (SPT)	Equipment	: Edson RP70	
			See explanation sheets for meaning of all descriptive ter	ms and symbols	Hole Diam	eter (mm): 100	
					Angle fron	n vertical (°) 0	

Client: Columbia Lane Development Pty Limited Project: 21024 / 7145C				BO	BOREHOLE NO.: BH 15		
Location:	Refer to Dr	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH	DESCRIPTION OF	F DRILLED PRODUCT ticity, minor components, observations)	S Y M B O	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R F
		(iii)	ASPHALT/SANDY GRAVEL: dark grey, fine to	medium grained	GW		D
	S66		GRAVELLY CLAYEY SAND: dark grey and bla	ack with light grey, fine grained, some gravel	GW/GC		М
	@ 0.3 m			FILL			
	S67 @ 0.7 m	1.0	SILTY CLAY: light brown and orange brown wit	th light grey, medium to high plasticity	CL/CH		M-VM
			BOREHOLE DISCONTINUED AT 1.2 M				
		2.0					
		3.0					
		4.0					
		5.0					
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample free water	B - bulk sample N - Standard Penetration Test (SPT)	Contractor: Equipment:	STS Edson RP70	<u>I</u>
			See explanation sheets for meaning of all descript	tive terms and symbols	Hole Diame Angle from	ter (mm): 100 Vertical (°) 0	

Client: C Project:	Client: Columbia Lane Development Pty Limited Project: 11 - 17 Columbia Lane. Homebush		Project: 21024 / 7145C Date : 19/07/2016	В	BOREHOLE NO.:		
Location:	Refer to Dr	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plasti	DRILLED PRODUCT city, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	569		SILTY CLAY: dark grey with orange brown, medium	plasticity, traces of gravel	CL		М
	@ 0.2 m			FILL			
	S69 @ 0.5 m		SILTY CLAY: orange brown with light grey, mediun	n to high plasticity	CL/C	H	М
		1.0					
			SILTY CLAY: light grey with orange brown, medium	n to high plasticity	CL/C	H	М
		2.0					M-VM
WT		5.0					WET
wi	1						
			WEATHERED SHALE: dark grey, clay seams			EXTREMELY LOW STRENGTH	M-D
			BOREHOLE DISCONTINUED AT 6.0 M	Standpipe Piezometer Installed			
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample free water	B - bulk sample N - Standard Penetration Test (SPT)	Contracto Equipment	or: STS nt: Edson RP70	
			See explanation sheets for meaning of all descriptive	re terms and symbols	Hole Dia	meter (mm): 100	
					Angle fro	m Vertical (°) 0	

Client: C Project:	Client: Columbia Lane Development Pty Limited Project: 21024 / 7145C Project: 11 - 17 Columbia Lane, Homebush Date : 19/07/2016					BOREHOLE NO.: BH 17			
Location:	Refer to Dra	awing No. 19/13	15	Logged: JK		Sheet 1 of	1		
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plastic	DRILLED PRODUCT	S Y M E C I	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E		
	S70/71/72 @ 0.2 m		SILTY CLAY: dark brown and red brown with dark g gravel	rey and light grey, medium plasticity, traces of	C	L	D		
	S73 @ 0.8 m	1.0	SILTY CLAY: light grey and brown with orange brow BOREHOLE DISCONTINUED AT 1.0 M	FILL vn, medium plasticity	C	L	M M-VM		
NOTES:	D - disturbe	2.0	U - undisturbed tube sample	B - bulk sample	Contrac	tor: STS			
	WT - level o	of water table or	free water	N - Standard Penetration Test (SPT)	Equipm	nent: Edson RP70			
			See explanation sheets for meaning of all descriptiv	e terms and symbols	Hole D Angle f	iameter (mm): 100 from Vertical (°) 0			

Jacobie: Refer to Densing No. 10/13 0 Lorged: JK Section Sectio	Client: C Project:	Client: Columbia Lane Development Pty Limited Project: 21024 / 7145C Project: 11 - 17 Columbia Lane Homebush Date : 19/07/2016					BOREHOLE NO.: BH 18		
W S Image: Construction of the second secon	Location:	Refer to Dra	awing No. 19/13	815	Logged: JK		Sheet 1 of 1		
S14	W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF I (Soil type, colour, grain size, plastic	DRILLED PRODUCT ity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E	
S74 (6) 0.2 m SILY CLY: light brown and grey with orange froom, median plasticity CL M BOREHOLE DISCONTINUED AT 0.5 M I				ASPHALT/SANDY GRAVEL: dark grey, fine to med	ium grained	G١	W	D	
NOTES: D - disturbed sample U - undisturbed tube sample B - bulk sample Contractor: STS WT - level of water table or free water N - Standard Penetration Test (SPT) Equipment: Edson RP70 Hole Diameter (mm): 100 Arachefere V. ci. 100 Arachefere V. ci. 100		S74 @ 0.2 m	(m)	ASPHALT/SANDY GRAVEL: dark grey, fine to med SILTY CLAY: light brown and grey with orange brow BOREHOLE DISCONTINUED AT 0.5 M	lium grained n, medium plasticity				
NOTES: D - disturbed sample U - undisturbed tube sample B - bulk sample Contractor: STS WT - level of water table or free water N - Standard Penetration Test (SPT) Equipment: Edson RP70 See explanation sheets for meaning of all descriptive terms and symbols Hole Diameter (mm): 100 Archeferen V. view (m) 0			5.0						
WT - level of water table or free water N - Standard Penetration Test (SPT) Equipment: Edson RP70 See explanation sheets for meaning of all descriptive terms and symbols Hole Diameter (mm): 100 Apple form V/ (r) (mm)	NOTES:	D - disturbe	d sample	U - undisturbed tube sample	B - bulk sample	Contrac	etor: STS		
See explanation sheets for meaning of all descriptive terms and symbols Hole Diameter (mm): 100		WT - level o	of water table or	free water	N - Standard Penetration Test (SPT)	Equipm	ent: Edson RP70		
Angle from Vertical (*) 0				See explanation sheets for meaning of all descriptive	e terms and symbols	Hole Di Angle f	iameter (mm): 100 rom Vertical (°) 0		

Client: Columbia Lane Development Pty Limited Project: 21024 / 7145C Project: 11 - 17 Columbia Lane, Homebush Date : 19/07/2016				BOREHOLE NO.: BH			
Location:	Refer to Dra	awing No. 19/13	15	Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF (Soil type, colour, grain size, plastic	DRILLED PRODUCT	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			ASPHALT/SILTY GRAVEL: dark grey, fine to medi	um grained	GW		D
	S75 @ 0.2 m S76 @ 0.4 m		GRAVELLY SANDY CLAY: black and dark grey, fi	ne to medium grained, low plasticity, some gravel to high plasticity	CL CL/CH		M
			BOREHOLE DISCONTINUED AT 1.0 M				
NOTES:	D - disturbe WT - level c	d sample of water table or	U - undisturbed tube sample	B - bulk sample N - Standard Penetration Test (SPT)	Contractor Equipment	: STS : Edson RP70	
			See explanation sheets for meaning of all descriptiv	e terms and symbols	Hole Diam	eter (mm): 100	
					Angle from	n Vertical (°) 0	

Client: C	Client: Columbia Lane Development Pty Limited Project: 21024 / 7145C					BOREHOLE NO.: BH 20		
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK		Sheet 1 of 1			
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E		
	S77 @ 0.3 m		CONCRETE: 180 mm thick GRAVELLY SANDY CLAY: black, fine grained, low plasticity, some gravel	CL		М		
			FILL			M-VM		
WT	S78 @ 1.0 m	1.0	SILTY CLAY: light grey with orange brown, medium to high plasticity	CL/CH		M-VM WET		
		2.0						
		3.0						
		4.0	BOREHOLE DISCONTINUED AT 4.0 M					
		5.0						
NOTES:	D - disturbe WT - level o	d sample of water table or	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor Equipment	: STS :: Edson RP70			
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Dian	eter (mm): 100			
				Angle from	n Vertical (°) 0			

Client: O Project: 1	Columbia Lan 1-17 Columb	e Development bia Lane, Homeb	Pty Limited Project: 21024/1934D-E ush Date : May 20, 2019	BOREHOLE NO.: BH 21			
Location:	Refer to Dra	awing No. 19/13	15 Logged: JK Checked By: CR		Sheet 1 of 1		
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E	
	S80 @ 0.2 m		CONCRETE: (120 mm thick) GRAVELLY CLAVEY SAND: light grey fine grained some gravel (concrete)	SC		D	
	ASS1 @ 0.5 m ASS2 @ 1.0 m S81/ASS3 @ 1.5 m	1.0	FILL				
	0.		SILTY CLAY: light grey with yellow brown and occasional red brown, medium plasticity	CL		М	
	S82/ASS4 @ 2.0 m	2.0	SILTY CLAY: orange brown/yellow brown with light grey, medium plasticity, trace of sand	CL		М	
	ASS5 @ 2.5 m						
	S83/ASS6 @ 3.0 m	3.0					
WT 20/5/19	ASS7 @ 3.5 m		SILTY CLAY: orange brown, medium plasticity, trace of gravel (sub-well rounded)	CL		M-W	
	ASS8 @ 4.0 m	4.0					
	ASS9 @ 4.5 m						
	ASS10 @ 5.0 m	5.0					
	ASS11 @ 5.5 m						
			WEATHERED SHALE: dark grey with some light grey, clay seams		EXTREMELY LOW	М	
	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	SIKENGIH : STS		
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT)	Equipment	: Mini Christie		
	S - jar samp	le		Hole Diam	neter (mm): 100		
NOTES:			See explanation sheets for meaning of all descriptive terms and symbols	Angle from Drill Bit:	Vertical (°): 0 Spiral		

STS GeoEnvironmental Pty Ltd

Client: C Project: 1	Client: Columbia Lane Development Pty Limited Project: 21024/1934D-E Project: 11-17 Columbia Lane Homebush Date - May 20 2019				REHOLE NO.:	BH 22
Location:	Refer to Dra	wing No. 19/13	5 Logged: JK Checked By: CR		Sheet 1 of 1	
W AT TA EB RL E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S84		CONCRETE: (180 mm thick)			
	@ 0.2 m \$85/AS\$12		SILTY CLAY: dark grey with orange brown, medium plasticity, trace of fine sand, trace of gravel FILL	CL		М
	@ 0.5 m ASS13		SILTY CLAY: light grey with orange brown, medium to high plasticity	CL/CH		М
	@ 1.0 m	1.0	SILTY CLAV: light gray with grappe brown and red brown, medium to high plasticity.	CL/CH		М
	@ 1.5 m		SILTT CLAT. Ign gicy will orange brown and red brown, includin to lign plasticity	eren		111
	@ 2.0 m	2.0	SILTY CLAY: light grey with red brown, high plasticity	СН		М
	@ 2.5 m		SILTY CLAY: light grey with orange brown, high plasticity, trace of shale gravel	СН		М
	S88/ASS17 @ 3.0 m	3.0				
	ASS18 @ 3.5 m					
		4.0	WEATHERED SHALE: dark grey with light grey and orange brown, clay seams		EXTREMELY LOW STRENGTH	D
		5.0	BOREHOLE DISCONTINUED AT 45 M ON WEATHERED SHALE			
	D - disturbed WT - level o	l sample f water table or	U - undisturbed tube sample B - bulk sample C ree water N - Standard Penetration Test (SPT) E	ontractor quipment	: STS : Mini Christie	
	S - jar sampl	e	H	ole Diam	eter (mm): 100	
NOTES:			See explanation sneets for meaning of an descriptive terms and symbols	igle from rill Bit:	vertical (⁻): 0 Spiral	

STS GeoEnvironmental Pty Ltd

Client: Project:	Columbia Lan 11-17 Columb	e Development l ia Lane, Homeb	elopment Pty Limited Project: 21024/1934D-E e, Homebush Date : May 20, 2019		REHOLE NO.:	BH 23
Location:	Refer to Dra	wing No. 19/13	15 Logged: JK Checked By: CR		Sheet 1 of 1	
W A T T A E B R L E	S A M L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S89/S90/S91		GRAVELLY SANDY CLAY: dark grey with orange brown and black, fine grained, low plasticity,	CL		D
	@ 0.2 m ASS19 @ 0.5 m		some grave/glass/asn			
	@ 0.8 m ASS20 @ 1.0 m	1.0	SANDY CLAY: dark brown with orange brown, light grey and dark grey, medium plasticity, trace of gravel	CL		М
	0.0-1.0 m S93/ASS21 @ 1.5 m		FILL SILTY CLAY: light grey with orange brown and red brown, medium to high plasticity	CL/CH		М
	EIL 1.0-2.0 m S94/ASS22 @ 2.0 m	2.0	SILTY CLAY: red brown with light grey, medium to high plasticity	CL/CH		М
	ASS23 @ 2.5 m EIL3 2.0-3.0 m S95/ASS24 @ 3.0 m	3.0	SILTY CLAY: light grey with orange brown and red brown, medium to high plasticity	CL/CH		М
	ASS25 @ 3.5 m ASS26 @ 4.0 m	4.0	SILTY CLAY: light grey, high plasticity	СН		М
	ASS27 @ 4.5 m					
	ASS28 @ 5.0 m	5.0	SILTY CLAY: orange brown, medium to high plasticity, trace of gravel	CL/CH		М
	ASS29 @ 5.5 m					
		<u> </u>	WEATHERED SHALE: dark grey with light grey, clay seams BOREHOLE DISCONTINUED AT 6.0 M		EXTREMELY LOW STRENGTH	D
	D - disturbed	d sample	U - undisturbed tube sample B - bulk sample	Contractor	: STS	
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT)	Equipment	: Mini Christie	
NOTES:	5 - jar sampi		See explanation sheets for meaning of all descriptive terms and symbols	Angle from	Vertical (°): 0	
				Dim Dit.	opnai	

Client: C Project: 1	Columbia Land 1-17 Columbia	e Developmer ia Lane, Hom	Pty Limited Project: 21024/1934D-E bush Date : May 20, 2019	BOREHOLE NO.: BH 24		
Location:	Refer to Dra	wing No. 19/	315 Logged: JK Checked By: CR		Sheet 1 of 1	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S96 @ 0.2 m	-	ASPHALTIC CONCRETE: (50 mm thick) SANDY GRAVEL: dark grey/black fine to medium grained sand gravel ash	GW		D
	(ii) 0.2 m		FILL	0.1		D
	@ 0.5 m		SILTY CLAY: orange brown with light grey and red brown, medium to high plasticity	CL/CH		М
	ASS31 @ 1.0 m	1.0	SILTY CLAY: light grey with red brown and orange brown, medium to high plasticity	CL/CH		М
	S98/ASS32 @ 1.5 m					
	ASS33 @ 2.0 m	2.0	SILTY SANDY CLAY: light grey with yellow brown/orange brown, fine grained sand, medium plasticity	CL		М
	S99/ASS34 @ 2.5 m					
	S100/ASS35 @ 3.0 m	3.0	SILTY SANDY CLAY: yellow brown with light grey, fine grained sand, medium plasticity	CL		М
WT 20/5/19	ASS36 @ 3.5 m		SILTY CLAY: orange brown, fine grained sand, medium plasticity, some gravel, cobbles	CL		M-W
		4.0	AUGER REFUSAL AT 3.8 M			
		5.0				
	D - disturbed WT - level o	l sample f water table	U - undisturbed tube sample B - bulk sample C free water N - Standard Penetration Test (SPT) E	ontractor	: STS : Mini Christie	
NOTES:	S - Jar sampl	e	See explanation sheets for meaning of all descriptive terms and symbols A	iole Diam ngle from Drill Bit:	eter (mm): 100 Vertical (°): 0 Spiral	

STS GeoEnvironmental Pty Ltd

STS Geo	oEnviron	mental Pty	NON COR	NON CORE BOREHOLE			
Client: C Project: 1	Columbia Lan 1-17 Columb	e Development Dia Lane, Homeł	Project: 21024/1934D-E ush Date : May 21, 2019	BO	REHOLE NO.:	BH 24A	
Location:	Refer to Dra	awing No. 19/13	15 Logged: BH Checked By: CR		Sheet 1 of 1		
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E	
	[]		ASPHALTIC CONCRETE: (50 mm thick)				
	S107/S108/ S109 @ 0.5 m S110		SILTY CLAY: orange brown, medium plasticity, trace of gravel	CL		М	
	(@, U.8 m	1.0	SILTY CLAY: red brown and light grey, medium to high plasticity, trace of gravel	CL/CH		М	
	S111 @ 1.5 m		SILTY SANDY CLAY: orange brown and light grey, high plasticity, trace of gravel	CH		М	
	S112 @ 2.5 m						
	S113 @ 3.3 m ASS47		SILTY SANDY CLAY: brown, high plasticity, trace of gravel	CH		М	
	ASS48 @ 4.5 m	4.0	GRAVELLY SILTY CLAY: brown, high plasticity AUGER REFUSAL AT 4.5 M	СН		М	
		5.0					
	D - disturber WT - level c	d sample of water table or	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor: STS Equipment: Christie			
NOTES:	- Jar sampl		See explanation sheets for meaning of all descriptive terms and symbols	Angle from Drill Bit:	Vertical (°): 0 Spiral		
STS Ge	oEnvironr	nenta	l Pty	Ltd GEOTECHNICAL LOG - NO	N COF	RE BOREHOL	E
------------------------------------	---------------------------------	---------------------	--------------------	--	----------------------------	--	--------------------------------------
Client: 0 Project: 1	Columbia Lane 11-17 Columbi	: Develo a Lane,	opment I Homebr	Project: 21024/1934D-E ush Date : May 20, 2019	В	OREHOLE NO.:	BH 25
Location:	Refer to Dra	wing No	o. 19/13	15 Logged: JK Checked By: CR		Sheet 1 of 1	1
W A T T A E B R L E	S A M P L E S	DE] (1	PTH n)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S101/S102/ S103/ASS37			CONCRETE: (420 mm thick)			
	@ 0.5 m			GRAVELLY SANDY CLAY: dark grey/black with orange brown, fine grained sand,	CL		М
				medium plasticity, some gravel, ash FILL			
	S104/ASS38 @ 1.0 m	1.0		SILTY CLAY: red brown with orange brown and light grey, medium to high plasticity	CL/CI	Ŧ	М
	ASS39 @ 1.5 m						
	S105/ASS40 @ 2.0 m	2.0		SILTY CLAY: light grey with yellow brown, medium plasticity, trace of fine grained sand	CL		М
	ASS41 @ 2.5 m			- - - -			
	S106/ASS42 @ 3.0 m	3.0		SILTY CLAY: light grey, high plasticity	СН		М
	ASS43 @ 3.5 m			* * * * *			
	ASS44 @ 4.0 m	4.0		SILTY CLAY: red brown with light grey, medium to high plasticity, trace of ironstone gravel	CL/Cl	H	M-W
WT 20/5/19	ASS45 @ 4.5 m						
	ASS46 @ 5.0 m	5.0		SILTY CLAY: dark grey with light grey, medium to high plasticity,	CL/C!	H	М
				trace of shale gravel (C w Shale)			
				WEATHERED SHALE: dark grey with light grey, clay seams		EXTREMELY LOW STRENGTH	D
	D - disturbed	sample	;	U - undisturbed tube sample B - bulk sample	Contracto	or: STS]
	WT - level of S - jar sample	f water t	able or t	free water N - Standard Penetration Test (SPT)	Equipmer Hole Diar	ıt: Mini Christie neter (mm): 100	
NOTES:				See explanation sheets for meaning of all descriptive terms and symbols	Angle from Drill Bit:	n Vertical (°): 0 Spiral	

STS Ge	oEnviron	mental	l Pty	Ltd GEOTECHNICAL LOG - NO	N COR	E BOREHOL	Æ
Client: C Project: 1	Columbia Lan 1-17 Columb	e Develo ia Lane, l	pment l Homeb	Project: 21024/1934D-E ush Date : May 21, 2019	BO	REHOLE NO.:	BH 26
Location:	Refer to Dra	wing No	. 19/13	15 Logged: BH Checked By: CR		Sheet 1 of 1	
W AT TA EB RL E	S A M P L E S	DEP'	TH	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	~	(CONCRETE: (300 mm thick)			-
	S114/S115/ S116 @ 0.5 m	-		SILTY SANDY CLAY: brown, medium to high plasticity, trace of gravel	CL/CH		М
	S117 @ 0.9 m	-		GRAVELLY SILTY CLAY: red brown low plasticity	CL		D-M
	© 0.9 m EIL4 @ 0.9 m EIL5 1.5-2.5 m	^{1.0} –		GRAVELET SIELT CEAT. ICO FOWI, IOW plasticity			D-IVI
	S118 @ 1.8 m S119/S120/	2.0		SILTY CLAY: brown, some orange brown, high plasticity, trace of gravel	СН		М
	S121	_		SILTY CLAV: rad brown and light grave high plasticity trace of gravel	CH		м
	EIL6 2.6-2.9 m			SILTY CLAY: light brown, high plasticity, trace of gravel	СН		M
	S122	-		0 / 01 // 0			
	@ 3.4 m	-		SILTY SANDY CLAY: light grey brown, high plasticity, trace of gravel AUGER REFUSAL AT 3.5 M	CH		М
		4.0					
	D - disturbed	d sample	able or	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor Equipment	: STS : Christie	
	S - jar sampl	le			Hole Diam	eter (mm): 100	
NOTES:	1			See explanation sheets for meaning of all descriptive terms and symbols	Angle from Drill Bit:	Vertical (°): 0 Spiral	

	Borehole No./ Site Location:	BH1	BH1	BH1	BH1	BH1	BH2	BH2	BH2	BH2	BH3	BH3	BH3	BH4					
	Sample No.:	S1	S2	S3	S4	S5	S6	\$7	S8	S9	S12	S13	S14	S15	NEPM	NEPM 2013 HIL B / HSL B	ESLs (Urban	HSL-B (High Density	Management Limits
	Depth:	0.2 m	0.4 m	0.7 m	1.7 m	3.2 m	0.3 m	0.6 m	1.2 m	3.0 m	0.2 m	0.6 m	1.8 m	0.3 m	Ranges	(High Density Residential)	Residential and Public Open Space)	Residential) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes	Date Sampled:	04-Jul-16	04-Jul-16	04-Jul-16	04-Jul-16	04-Jul-16	04-Jul-16	04-Jul-16	04-Jul-16	04-Jul-16	05-Jul-16	05-Jul-16	05-Jul-16	06-Jul-16			,		
Metals																			
Arsenic		<5	<5	41	9	8	13	8	<5	10	<5	8	<5	<5	1-50	500	100 (b), (i)		
Cadmium		<1	<1	<1	<1	<1	4	2	<1	<1	<1	<1	<1	<1	1	150	3 (d)		
Chromium		48	/	12	36	36	23	16	9	38	23	5	13	12	5-1000	500 (m)	550 (c), (o)		
Loopper		24	50	1.040	10	10	107	239	12	14	27	22	13	56	2-100	1 200	95 (C) 1 100 (b) (i)		
Marcury		<0.1	40	1,040	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	2-200	1,200 (n)	1,100 (b), (i)		
Nickel		85	61	6	19	19	~0.1 96	22	3	5	28	5	-0.1	46	5-500	1 200	200 (c)		
Zinc		82	41	239	41	41	199	240	11	45	42	52	8	251	10-300	60,000	510 (c)		
Monocyclic Aroma	tic Hydrocarbons (MAHs)	02		200		41	100	240		40	42	02	0	201	10 000	00,000	010 (0)		
Benzene		<0.2	<0.2	-	< 0.2	-	<0.2	< 0.2	<0.2	-	<0.2	<0.2	-	<0.2		0.7 (g)	65 (h)	140	
Toluene		<0.5	< 0.5	-	< 0.5	-	< 0.5	< 0.5	<0.5	-	<0.5	< 0.5	-	< 0.5		480 (g)	105 (h)	21,000	
Ethylbenzene	3	<0.5	<0.5	-	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	-	< 0.5		NL (g), (l)	125 (h)	5,900	
Xylenes		<0.5	<0.5	-	<0.5		<0.5	<0.5	<0.5	-	<0.5	<0.5		<0.5		110 (g)	45 (h)	17,000	
Napthalene		<1	<1	-	<1	-	<1	<1	<1	-	<1	<1	-	<1		5 (g)	170 (b), (h	2,200	
Total MAHs a	above detection limits	ND	ND	-	ND	-	ND	ND	ND	-	ND	ND	-	ND					
Volatile Organic Co	ompounds																		
I otal VOCs a	above detection limits	-	-	-	-	-	-	-	ND	-	-	ND							
Total Petroleum Hy	drocarbons (TPHs)	-10	.10		-10		-10	-10	-10		-10	-40		-10					000 (1)
Total C6-C10		<10	<10	-	<10		<10	<10	<10	-	<10	<10	-	<10			100		800 (h)
Total C10-C16		<50	<50	-	<50		<50	<50	<50	-	<50	<50		<50			120		1,000 (h)
F1 C6-C10 (0	l)	<10	<10	-	<10	-	<10	<10	<10	-	<10	<10	-	<10		50 (g)	180	5,600	
F2 C ₁₀ -C ₁₆ ' (e)	<50	<50	-	<50	-	<50	<50	<50	-	<50	<50	-	<50		280 (g)		4,200	
F3 >C16-C34		160	<100	-	250		120	1,280	<100	-	<100	<100	-	<100			1,300 (h)	5,800	3,500 (h)
F4 >034-040		<100	<100	-	<100	-	<100	650	150	-	<100	<100	-	<100			5,600 (h)	8,100	10,000 (h)
Delvevelie Aremeti	a Hudroserhens (DAHa)	160	ND	-	250		120	1,930	150		ND	ND	-	NU					
Polycyclic Arollau Ronzo(a)pure	c Hydrocarbolis (PAHs)	0.7	<0.5		4.6		11	17	<0.5		<0.5	<0.5		<0.5			0.7 (b)		
Cereinegenie	DALLa ²	0.9	<0.5		6.6		1.4	24	<0.5		<0.5	<0.5		<0.5		4	0.7 (11)		
Total PAHs a	above detection limits	7.2	ND	-	59.7		11.8	170	ND	-	ND	ND	-	ND		400			
Organochlorine Pe	sticides (OCPs)																		
DDT+DDE+I	DDE		<0.05	-	-		<0.05		-	-	<0.05	-		0.17		600	180 (b) (k)		
Aldrin + Diek	trip		<0.05				<0.05				<0.05			<0.05		10	100 (b), (ii)		
Aldrin + Dielo	2001		-0.05	-	-		-0.05			-	-0.05			-0.05		10			
Chiordane		-	<0.05	-	-		<0.05	-	-	-	<0.05	-		<0.05		90			
Endosulfan		-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	<0.05		400			
Endrin		-	< 0.05	-	-	-	< 0.05	-	-	-	<0.05	-	-	< 0.05		20			
Heptachlor		-	< 0.05	-	-	-	< 0.05	-	-	-	< 0.05	-	-	<0.05		10			
HCB		-	< 0.05	-	-	-	< 0.05	-	-	-	< 0.05	-	-	< 0.05		15			
Methoxychlor	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	<0.2		500			
Mirex	- Lance destruction Produc	-	-	-	-	-	-	-	-	-	-	-	-	-		20			
Total OCPs a	above detection limits	-	NU	-	-		ND	-	-	-	ND	-		0.17					
Organophosphoru	s Pesticides (OPPs)		-0.05				-0.05				-0.05			-0.05		242			
Total ORRe :	about detection limits		<0.05				<0.05				<0.05			<0.05		340			
Polychlorinated Bi	above detection limits	-	ND	-	-	-	ND	-	-	-	ND	-		ND					
Total PCBs a	above detection limits	-	ND	-	-	-	ND	-	-	-	ND	-	-	ND		1			
Phenolic Comnour	ds																		
Phenol		-	< 0.5	-	-	-	<0.5	-	-	-	<0.5	-	-	< 0.5		45,000			
Pentachlorop	henol	-	<2	-	-		<2	-	-	-	<2	-	-	<2		130			
Cresols		-	<1.5	-	-	-	<1.5	-	-	-	<1.5	-	-	<1.5		4,700			
Total Phenol:	5	-	ND	-	-		ND	-	-	-	ND	-	-	ND					
Asbestos		-	-	-	-	-	-	-	-	-	-	-	-	-					
Bonded ACN	1 (w/w) (%)	-	-	-	-	-	-	-	-	-	-	-	-	-		0.04			
Friable asbes	tos (fibrous and fines)(w/w) (%)	< 0.001	-	-	-	-	< 0.001	-	< 0.001	-	-	-	-	<0.001		0.001			
Asbestos Ty	pe	No	-	-	-	-	No	-	No	-	-	-	-	No					

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL B /HSL B (High Density Residential) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL B (High Density Residential) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting Results shaded purple exceed both the NEPM 2013 HIL/HSL B (High Density Residential) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL (c) NEPM 2013 site-specific EIL (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available

(e) F1 TPH = TPH (C6-C10) minus BTEX fraction

(f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

GeoEnvironmental Geotechnical and Environmental Solution

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in Clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

(n) Criterion for inorganic mercury

	Borehole No./ Site Location:	BH4	BH4	BH4	BH4	BH5	BH5	BH6	BH6	BH6	BH6	BH9	BH9	BH9					
	Sample No.:	S16	S17	S18	S19	S20	S21	S22	S25	S26	S27	S40	S41	S42	NEPM	NEPM 2013 HIL B / HSL B	ESLs (Urban	HSL-B (High Density	Management Limits
	Depth:	0.8 m	1.2 m	2.6 m	4.1 m	0.5 m	1.0 m	0.3 m	1.0 m	1.2 m	5.6 m	0.2 m	0.8 m	1.2 m	Ranges	(High Density Residential)	Residential and Public Open Space)	Residential) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes	Date Sampled:	06-Jul-16	06-Jul-16	06-Jul-16	06-Jul-16	06-Jul-16	06-Jul-16	07-Jul-16	07-Jul-16	07-Jul-16	07-Jul-16	18-Jul-16	18-Jul-16	18-Jul-16					
Metals																			
Arsenic		8	6	-	-	7	<5	7	5	<5	-	10	<5	<5	1-50	500	100 (b), (i)		
Cadmium		<1	<1	-	-	2	<1	<1	<1	<1	-	<1	<1	<1	1	150	3 (d)		
Chromium		24	11	-	-	11	11	12	10	10	-	15	68	11	5-1000	500 (m)	550 (c), (o)		
Looper		28	13	-	-	101	9	23	20	12		9	00	18	2-100	1 200	95 (C) 1 100 (b) (i)		
Marcuru		0.1	<0.1	-		0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	2-200	1,200 (n)	1,100 (b), (j)		
Nickel		12	-0.1			84	<2	-0.1	12	<2		7		-0.1	5-500	1 200	200 (c)		
Zinc		52	9	-	-	222	7	37	52	6	-	25	127	14	10-300	60.000	510 (c)		
Monocyclic Aroma	tic Hydrocarbons (MAHs)	02	0			LLL	,	0,	01	0		20	127	14	10 000	00,000	010 (0)		
Benzene		<0.2	<0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	-	< 0.2	-	< 0.2		0.7 (g)	65 (h)	140	
Toluene		<0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	<0.5	<0.5	-	< 0.5	-	< 0.5		480 (g)	105 (h)	21,000	
Ethylbenzene	8	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	<0.5		NL (g), (l)	125 (h)	5,900	
Xylenes		<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	-	<0.5		110 (g)	45 (h)	17,000	
Napthalene		<1	<1	-	-	<1	<1	<1	<1	<1	-	<1	-	<1		5 (g)	170 (b), (h	2,200	
Total MAHs a	above detection limits	ND	ND	-	-	ND	ND	ND	ND	ND	-	ND	-	ND					
Volatile Organic Co	mpounds																		
Total VOCs a	above detection limits	-	-	-	-	-	-	-	-	-	-	-	-	ND					
Total Petroleum Hy	drocarbons (TPHS)	-10	-10			-10	-10	-10	-10	-10		-10		-40					200 (1)
Total C6-C10		<10	<10	-	-	<10	<10	<10	<10	<10	-	<10	-	<10			400		800 (h)
Total C10-C16		<50	<50	-	-	<50	<50	<50	<50	<50	-	<50	-	<50			120		1,000 (H)
F1 C6-C10 (d)	<10	<10	-	-	<10	<10	<10	<10	<10	-	<10	-	<10		50 (g)	180	5,600	
F2 C ₁₀ -C ₁₆ ' (e)	<50	<50	-	-	<50	<50	<50	<50	<50	-	<50	-	<50		280 (g)		4,200	
F3 >C16-C34		<100	180	-	-	<100	<100	<100	<100	<100		<100	-	<100			1,300 (h)	5,800	3,500 (h)
F4 >034-040		<100	<100	-	-	<100	<100	<100	<100	<100	-	<100	-	<100			5,600 (h)	8,100	10,000 (h)
Delvevelie Aremeti	- Hudroserhene (DAHe)	ND	180	-		ND	ND	ND	NU	ND		ND		NU					
Polycyclic Arollau Bonzo(a)pyra	c hydrocarbolis (PAHS)	10	0.6			<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5			0.7 (b)		
Cereinegenie	DAHe ²	13	0.0			<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5		4	0.7 (11)		
Total PAHs a	bove detection limits	7.0	4.0	-	-	4	ND	ND	ND	ND	-	ND	-	ND		400			
Organochlorine Pe	sticides (OCPs)																		
DDT+DDE+F	DDE			-		<0.05			-	-		-	-			600	180 (b) (k)		
Aldrin I Diele						<0.05										10	100 (0), (ii)		
Aldrift + Dielo				-		-0.05				-		-	-			10			
Chiordane		-	-	-	-	<0.05		-	-	-	-	-	-	-		90			
Endosulfan		-	-	-	-	<0.05	-	-	-	-	-	-	-	-		400			
Endrin		-	-	-	-	< 0.05	-	-	-	-	-	-	-	-		20			
Heptachlor		-	-	-	-	< 0.05	-	-	-	-	-	-	-	-		10			
HCB		-	-	-	-	< 0.05	-		-	-	-	-	-	-		15			
Methoxychlor		-	-	-	-	<0.2	-	-	-	-	-	-	-	-		500			
Mirex	have detection from the	-	-	-	-	-	-	-	-	-	-	-	-	-		20			
Organisheenheenheen	above detection limits		-	-	-	ND	-	-	-	-		-	-						
Organophosphorus	s Pesticides (OPPs)					-0.05										242			
Total OPPs r	have detection limits			-	-	ND					-					340			
Polychlorinated Bit	above detection innus					ND													
Total PCBs a	bove detection limits	-	-	-	-	ND	-	-	-	-	-	-	-	-		1			
Phenolic Compoun	ds																		
Phenol			-	-	-	<0.5		-	-	-		-	-	-		45,000			
Pentachlorop	henol	-	-			<2	-	-	-	-		-	-	-		130			
Cresols		-	-	-	-	<1.5	-	-	-	-	-	-	-	-		4,700			
Total Phenols		-	-	-		ND	-		-	-			-	-	-				
Asbestos																			
Bonded ACM	(w/w) (%)	-	-	-	-	-	-	-	-	-	-	-	-	-		0.04			
Friable asbes	tos (fibrous and fines)(w/w) (%)	-		-	-	< 0.001	-	< 0.001	-	-	-	0.0005	-	-		0.001			
Asbestos Typ	90	-	-	-	-	No	-	No			-	CH	-	-					

Notes Results in mg/kg unless specified otherwise

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL B /HSL B (High Density Residential) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL B (High Density Residential) criteria for direct contact with soil

results shaded green exceed the Orto OARE 2011 Hot B (right Density Residential) cheria for direct contact with

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting Results shaded purple exceed both the NEPM 2013 HIL/HSL B (High Density Residential) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL
 (c) NEPM 2013 site-specific EIL
 (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available

(e) F1 TPH = TPH (C6-C10) minus BTEX fraction (f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in Clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

 NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solutions

(n) Criterion for inorganic mercury

	Borehole No./ Site Location:	BH10	BH13	BH13	BH13	BH14	BH14	BH14	BH15	BH15	BH16	BH16	BH17	BH17				000 0005 0044	
	Sample No.:	S43	S54	S55	S56	S61	S62	S65	S66	S67	S68	S69	S70	S73	NEPM	NEPM 2013 HIL B / HSL B	ESLs (Urban	HSL-B (High Density	Management Limits
	Depth:	0.5 m	0.5 m	1.5 m	3.0 m	0.2 m	1.5 m	3.0 m	0.3 m	0.7m	0.2 m	0.5 m	0.2 m	0.8 m	Ranges	(High Density Residential)	Residential and Public Open Space)	Residential) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes	Date Sampled:	18-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16					
Metals																			
Arsenic		<5	<5	<5	6	8	7	<5	12	<5	6	6	<5	<5	1-50	500	100 (b), (i)		
Cadmium		<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	1	150	3 (d)		
Chromium		1/	8	12	13	6	12"	11	19	9	14	14	31	10	5-1000	500 (m)	55U (C), (O)		
Loopper		14	25	10	11	<5	<5	0	117	30	129	12	47	10	2-100	1 200	95 (C) 1 100 (b) (i)		
Marcun/		<0.1	<0.1	<0.1	< 01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2-200	1,200 (n)	1,100 (b), (j)		
Nickel		5	3	-0.1	<2	<2	73	<2	45	5	50	2	36	4	5-500	1 200	200 (c)		
Zinc		5	18	6	<5	20	143	<5	259	37	198	10	88	67	10-300	60.000	510 (c)		
Monocyclic Aroma	tic Hydrocarbons (MAHs)						14												
Benzene		<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-		0.7 (g)	65 (h)	140	
Toluene		<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		480 (g)	105 (h)	21,000	
Ethylbenzen	9	<0.5	< 0.5	<0.5	<0.5	-	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		NL (g), (l)	125 (h)	5,900	
Xylenes		<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		110 (g)	45 (h)	17,000	
Napthalene		<1	<1	<1	<1	-	<1	<1	<1	<1	<1	<1	<1			5 (g)	170 (b), (h)	2,200	
Total MAHs	above detection limits	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	-					
Volatile Organic Co	ompounds	ND		ND				ND				ND	ND						
Total VUUS	above detection limits	ND		ND				ND				ND	ND						
Total Petroleum Hy	(urocarbons (TPHs)	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10						800 (h)
Total Ce-C10		<10	<10	<10	<10	-	<10	<10	<10	<10	<10	<10	<10	-			120		1 000 (h)
Total C10-C1	a)	<50	<50	<50	<50	-	<50	<50	<50	<50	<50	<50	<50	-		50 (-)	120	5.000	1,000 (h)
F1 C6-C10 (0	1)	<10	<10	<10	<10	-	<10	<10	<10	<10	<10	<10	<10			50 (g)	180	5,600	
F2 C10-C16	(e)	<50	<50	<50	<50	-	<50	<50	<50	<50	<50	<50	<50			280 (g)		4,200	
F3 >C16-C34		<100	<100	<100	<100	-	<100	<100	<100	<100	320	<100	160				1,300 (h)	5,800	3,500 (h)
Total C C		<100	<100	<100	<100	-	<100	<100	<100	<100	100	<100	<100				5,600 (h)	8,100	10,000 (H)
Polycyclic Aromati	c Hydrocarbone (PAHe)	ND	ND	ND	ND	-	ND	ND	ND	ND	420	ND	100						
Benzo(a)pyrg	ane	<0.5	0.9	<0.5	<0.5		<0.5	<0.5	0.6	<0.5	2.8	<0.5	1.03				0.7 (b)		
Carcinogenia	PAHe ²	<0.5	11	<0.5	<0.5	-	<0.5	<0.5	0.7	<0.5	3.7	<0.5	2.53			4	0.7 (ii)		
Total PAHs a	above detection limits	ND	8.1	ND	ND	-	ND	ND	4.5	ND	30.6	ND	22.1 ³	-		400			
Organochlorine Pe	sticides (OCPs)												in in 1						
DDT+DDE+	DDE	<0.05	-	<0.05	-			-	-	<0.05	-	<0.05	-			600	180 (b) (k)		
Aldrin + Diek	drin	<0.05		<0.05						<0.05		<0.05				10			
Chlordone	3111	<0.05	-	<0.05	-		-			<0.05	-	<0.05	-			10			
Chiordane		<0.05	-	<0.05	-	-	-	-	-	<0.05	-	<0.05	-			90			
Endosultan		<0.05	-	<0.05	-	-	-	-	-	<0.05	-	<0.05	-			400			
Endrin		< 0.05	-	< 0.05	-	-	-	-	-	<0.05	-	< 0.05	-	-		20			
Heptachlor		< 0.05	-	< 0.05	-	-	-	-	-	< 0.05	-	< 0.05	-			10			
HCB		< 0.05	-	< 0.05	-	-	-	-	-	< 0.05	-	< 0.05	-	-		15			
Methoxychio	r	<0.2		<0.2						<0.2	-	<0.2	-			500			
Tatel OCDa	akasa dataatian limita	ND		ND						-		-	-			20			
Orrenenheenheen	a Destisides (ODDs)	IND	-	ND	-	-	-	-	-	ND	-	ND	-	-					
Chlorpurifor	s resticides (OFFS)	<0.05		<0.05						<0.05		<0.05				340			
Total OPPs :	above detection limits	~0.05		~0.05 ND						~0.05 ND	-	~0.05	-			340			
Polychlorinated Bi	phenyls (PCB)	ND		ND						ND		ND							
Total PCBs a	above detection limits	ND	-	ND	-	-	-	-	-	ND	-	ND	-	-		1			
Phenolic Compour	nds																		
Phenol		<0.5	-	<0.5	-	-			-	<0.5	-	<0.5	-	-		45,000			
Pentachlorop	henol	<2	-	<2	-	-	-	-	-	<2	-	<2	-	-		130			
Cresols		<1.5	-	<1.5	-	-	-	-	-	<1.5	-	<1.5	-	-		4,700			
Total Phenol	s	ND	-	ND		-	-		-	ND	-	ND	-						
Asbestos																			
Bonded ACN	1 (w/w) (%)	-	-	-	-	-	-	-		-	-	-	-			0.04			
Friable asbe	stos (fibrous and fines)(w/w) (%)	< 0.001	< 0.001	-	-	-	-	-	-	-	< 0.001	-	-			0.001			
Asbestos Ty	pe	No	No	-	-	-	-		-	-	No	-	-	-					

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL B /HSL B (High Density Residential) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL B (High Density Residential) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting Results shaded purple exceed both the NEPM 2013 HIL/HSL B (High Density Residential) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL (c) NEPM 2013 site-specific EIL (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available (e) F1 TPH = TPH (C6-C10) minus BTEX fraction

(f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in Clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solution

(n) Criterion for inorganic mercury

Borehole No./ S	Site Location:	BH18	BH19	BH19	BH20	BH20	BH21	BH21	BH21	BH21	BH24	BH24	BH24	BH24					
	Sample No.:	S74	S75	S76	S77	S78	S80	S81	S82	S83	S96	S97	S98	S99	NEPM Background	NEPM 2013 HIL B / HSL B	NEPM 2013 EILs/ ESLs (Urban	CRC CARE 2011 HSL-B (High Density	NEPM 2013 Management Limits
	Depth:	0.2 m	0.2 m	0.4 m	0.3 m	1.0 m	0.2 m	1.5 m	2.0 m	3.0 m	0.2 m	0.5 m	1.5 m	2.5 m	Ranges	(High Density Residential)	Residential and Public Open Space)	Residential) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes Da	ate Sampled:	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	19-Jul-16	20-May-19												
Metals																			
Arsenic		<5	<5	<5		-	2	3		3	6	4	3	-	1-50	500	100 (b), (i)		
Cadmium		<1	2	<1	-	-	<0.3	< 0.3		<0.3	1.2	< 0.3	<0.3	-	1	150	3 (d)		
Chromium		10	23	14	-	-	30	27	-	3.9	18	15	6.5	-	5-1000	500 (m)	550 (c), (o)		
Copper		8	300	15	-	-	21	39	-	5.2	13	19	4.9	-	2-100	30,000	95 (C)		
Marcury		<0.1	<0.1	<0.1			<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	-	2-200	1,200 (n)	1,100 (b), (i)		
Nickel		3	49	2			41	30		3.1	37	7.1	2.4		5-500	1 200	200 (c)		
Zinc		11	215	11	-	-	36	35	-	5.6	57	12	4.7	-	10-300	60.000	510 (c)		
Monocyclic Aromatic Hydrocarbons (MAH	Hs)																		
Benzene		<0.2	<0.2	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	-		0.7 (g)	65 (h)	140	
Toluene		<0.5	<0.5				<0.1	<0.1		<0.1	<0.1		<0.1			480 (g)	105 (h)	21,000	
Ethylbenzene		<0.5	<0.5	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	-		NL (g), (l)	125 (h)	5,900	
Xylenes		<0.5	<0.5	-	-	-	<0.3	< 0.3	-	<0.3	<0.3	-	<0.3	-		110 (g)	45 (h)	17,000	
Napthalene		<1	<1	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	-		5 (g)	170 (b), (h	2,200	
Total MAHS above detection limits		ND	ND				ND	ND	-	ND	ND		ND	•					
Total VOCs above detection limits		-	-	-		-	-			-			-						
Total Petroleum Hydrocarbons (TPHs)										-									
Total Ce-Cio		<10	<10	-	-	-	<25	<25		<25	<25		<25	-					800 (b)
Total Cso-Cse		<50	<50	-	-	-	<25	<25		<25	<25		<25	-			120		1.000 (b)
E1 Cr=Cuo ¹ (d)		<10	<10	-	-	-	<25	<25		<25	<25	-	<25	-		50 (g)	180	5 600	.,
F2 CurCu ¹ (e)		<50	<50	-	-	-	<25	<25	-	<25	<25	-	<25	-		280 (g)		4 200	
E3 >Cur=Cu		<100	170	-		-	<90	<90		<90	<90		<90			200 (g)	1 300 (b)	5,800	3.500 (b)
F4 >C34		<100	140	-	-	-	<120	<120	-	<120	<120	-	<120	-			5.600 (h)	8,100	10.000 (h)
Total C ₁₀ -C ₄₀		ND	310	-	-	-	ND	ND	-	ND	ND	-	ND	-					
Polycyclic Aromatic Hydrocarbons (PAHs	5)																		
Benzo(a)pyrene		<0.5	<0.5	-		-	<0.1	<0.1		<0.1	0.4		<0.1	-			0.7 (h)		
Carcinogenic PAHs ²		< 0.5	<0.5	-		-	<0.2	< 0.2	-	< 0.2	0.6	-	<0.2			4			
I otal PAHs above detection limits		ND	ND	-	-	-	0.1	ND	-	ND	4.1	-	ND	-		400			
Organochlorine Pesticides (OCPs)																			
DD1+DDE+DDE		<0.05	-	-	-	-	-	<0.6	-	-	-	-		-		600	180 (b), (k)		
Aldrin + Dieldrin		< 0.05	-	-	-	-	-	<0.3	-	-	-	-		-		10			
Chlordane		<0.05	-	-	-	-	-	<0.2	-	-	-	-		-		90			
Endosulfan		< 0.05	-	-	-	-	-	<0.5	-	-	-	-		-		400			
Endrin		< 0.05	-	-	-	-	-	<0.2	-	-	-	-		-		20			
Heptachlor		< 0.05	-	-	-	-	-	<0.1	-	-	-	-		-		10			
HCB		< 0.05	-	-		-	-	<0.1	-	-	-	-		-		15			
Methoxychlor		<0.2	-	-	-	-	-	<0.1	-	-	-	-		-		500			
Mirex		-	-	-	-	-	-	<0.1	-	-	-	-		-		20			
Total OCPs above detection limits		ND	-	-	-	-	-	ND	-	-	-	-		-					
Organophosphorus Pesticides (OPPs)		-0.05						-0.0								212			
Chiorpyritos		<0.05			-	-	-	<0.2	-	-	-	-		-		340			
Polychlorinated Binbenyls (PCB)		ND	-	-		-	-	ND	-	-	-	-							
Total PCBs above detection limits		ND	-	-	-	-	-	ND	-	-	-	-		-		1			
Phenolic Compounds		-																	
Phenol		<0.5	-	-	-	-	-	<0.5	-	-	-	-		-		45,000			
Pentachlorophenol		<2	-	-				<0.5								130			
Cresols		<1.5	-					<1.5		-						4,700			
Total Phenols		ND	-	-	-	-	-	ND	-	-	-	-		-					
Asbestos							<0.01	-0.01				<0.01	<0.01			2.24			
DURDED ACM (WW) (%)	(P/)	-	-	-	-	-	<0.001	<0.001		-	-	<0.001	<0.001			0.001			
Asbestos Type	(1W) [70]	~0.001 No					No.	No				No	No			0.001			

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL B /HSL B (High Density Residential) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL B (High Density Residential) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting Results shaded purple exceed both the NEPM 2013 HIL/HSL B (High Density Residential) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL (c) NEPM 2013 site-specific EIL (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available

(e) F1 TPH = TPH (C6-C10) minus BTEX fraction (f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in Clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solution

(n) Criterion for inorganic mercury

	Borehole No./ Site Location	BH24	BH24A	BH24A	BH24A	BH24A	BH24A						
_	Sample No.	S100	S107	S110	S111	\$112	S113	NEP	PM	NEPM 2013 HIL B / HSL B	NEPM 2013 EILs/ ESLs (Urban	CRC CARE 2011 HSL-B (High Density	NEPM 2013 Management Limits
	Depth	3.0 m	0.5 m	0.8 m	1.5 m	2.5 m	3.3 m	Rang	ges	(High Density Residential)	Residential and Public Open Space)	Residential) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes	Date Sampled	20-May-19	21-May-19	21-May-19	21-May-19	21-May-19	21-May-19				,		
Metals													
Arsenic		-	-	4	-	3	11	1-50	0	500	100 (b), (i)		
Cadmium		-	-	<0.3	-	<0.3	<0.3	1	1	150	3 (d)		
Chromium		-	-	12	-	6.4	15	5-1000	0	500 (m)	550 (c), (o)		
Loopper				10	-	5.3	14	2-100	0	1 200	95 (C) 1 100 (b) (i)		
Mercury			-	<0.05	-	<0.05	<0.05	2-200	3 (n)	1,200 (n)	1,100 (b), (i)		
Nickel				1.4		23	12	5-500	5 (ii)	1 200 (11)	200 (c)		
Zinc			-	7.6	-	6.4	28	10-300	<u>n</u>	60,000	510 (c)		
Monocyclic Aroma	tic Hydrocarbons (MAHs)			7.0		0.4	20	10 000	0	00,000	010 (0)		
Benzene	,,, (-	-	<0.1	-	<0.1	-			0.7 (g)	65 (h)	140	
Toluene		-	-	<0.1	-	<0.1	-			480 (g)	105 (h)	21,000	
Ethylbenzen	0	-	-	<0.1	-	<0.1	-			NL (g), (l)	125 (h)	5,900	
Xylenes			-	< 0.3	-	<0.3	-			110 (g)	45 (h)	17,000	
Napthalene		-	-	<0.1	-	<0.1	-			5 (g)	170 (b), (h	2,200	
Total MAHs	above detection limits	-	-	ND	-	ND	-						
Volatile Organic C	ompounds												
Total VOCs	above detection limits	-	-	-	-	-	-						
Total Petroleum H	(TPHS)			-05		-05							000 (1)
Total C6-C10		-		<25		<25							800 (h)
Total C10-C1	8	-	-	<25	-	<25	-				120		1,000 (h)
F1 C ₆ -C ₁₀ (3)	-	-	<25		<25	-			50 (g)	180	5,600	
F2 C ₁₀ -C ₁₆ ¹	(e)	-	-	<25	-	<25	-			280 (g)		4,200	
F3 >C16-C34		-	-	<90	-	<90	-				1,300 (h)	5,800	3,500 (h)
F4 >C34-C40		-	-	<120	-	<120	-				5,600 (h)	8,100	10,000 (h)
Total C10-C4				ND		ND							
Polycyclic Aromat	IC Hydrocarbons (PAHS)			<0.1		<0.1					0.7 (h)		
Derizo(a)pyr	BALL 2	-	-	<0.1	-	<0.1	-			4	0.7 (11)		
Total PAHs	2 PAHS above detection limits			~0.2 ND		~0.2 ND				400			
Organochloring Pr	eticidos (OCBs)												
DDT+DDE+	DDF			<0.6		<0.6				600	180 (b) (k)		
Aldria - Did	dete			-0.0	-	-0.0				000	100 (b), (k)		
Aldrin + Diei	arin		-	<0.3	-	<0.3	-			10			
Chlordane		-	-	<0.2	-	<0.2	-			90			
Endosulfan		-	-	<0.5	-	<0.5	-			400			
Endrin		-	-	<0.2	-	<0.2	-			20			
Heptachlor		-	-	<0.1	-	<0.1	-			10			
HCB		-	-	<0.1	-	<0.1	-			15			
Methoxychlo	r	-	-	<0.1	-	<0.1	-			500			
Mirex		-	-	<0.1	-	<0.1	-			20			
Total OCPs	above detection limits	-	-	ND	-	ND	-						
Organophosphoru	s Pesticides (OPPs)												
Chlorpyrifos	a bi se can ad a ta a sté a sa Pina Na	-	-	<0.2	-	<0.2	-			340			
Total UPPs	above detection limits			ND	-	ND							
Total PCRs	phenyis (FCB)			ND		ND				1			
Phenolic Compose	ade		-	ND		ND	-			I			
Phenol	100		-	<0.5	-	<0.5				45.000			
Pentachloro	ohenol			<0.5	-	<0.5	-			130			
Cresols		-	-	<1.5	-	<1.5	-			4.700			
Total Phenol	s	-	-	ND	-	ND	-			.,			
Asbestos													
Bonded ACM	A (w/w) (%)	-	-	-	-		-			0.04			
Friable asbe	stos (fibrous and fines)(w/w) (%)	-	-	-	-		-			0.001			
Asbestos Ty	pe	-	-	-	-		-						

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL B /HSL B (High Density Residential) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL B (High Density Residential) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting Results shaded purple exceed both the NEPM 2013 HIL/HSL B (High Density Residential) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL (c) NEPM 2013 site-specific EIL (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available (e) F1 TPH = TPH (C6-C10) minus BTEX fraction

(f) F2 TPH = TPH (C10-C16) minus naphthalene fraction (g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in Clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solutions

(n) Criterion for inorganic mercury

	Borehole No./ Site Location:	BH7	BH7	BH8	BH8	BH8	BH8	BH11	BH11	BH11	BH11	BH12	BH12	BH12				000 0005 0044	
	Sample No.:	S28	S29	S30	S31	S32	S33	S49	S52	S57	S58	S53	S59	S60	NEPM	NEPM 2013 HIL C / HSL C (Recreational / Public Open	ESLs (Urban	HSL-C (Recreational /	Management Limits
	Depth:	0.2 m	1.2 m	0.2 m	0.6 m	2.6 m	5.2 m	0.2 m	0.7 m	1.5 m	3 m	0.5 m	1.5 m	3 m	Ranges	Space)	Residential and Public Open Space)	Open Space) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes	Date Sampled:	08-Jul-16	08-Jul-16	11-Jul-16	11-Jul-16	11-Jul-16	11-Jul-16	18-Jul-16	18-Jul-16	18-Jul-16	18-Jul-16	18-Jul-16	18-Jul-16	18-Jul-16					
Metals																			
Arsenic		6	6	8	<5	<5	-	<5	<5	7	<5	5	8	5	1-50	300	100 (b), (i)		
Cadmium		<1	<1	<1	<1	<1	-	<1	<1	<1	<1	<1	<1	<1	1	90	3 (d)		
Chromium		14	29	10	13	8		/	18	18	10	12	24	16	5-1000	300 (m)	550 (C), (0)		
Lood		102	16	116	19	17		48	16	10	11	21	29	18	2-100	600	1 100 (b) (i)		
Mercury		0.3	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.03 (n)	80 (n)	1,100 (b); (i)		
Nickel		13	6	30	4	<2	-	<2	3	2	<2	5	3	2	5-500	1.200	200 (c)		
Zinc		45	10	188	13	<5	-	15	7	5	9	47	22	17	10-300	30.000	510 (c)		
Monocyclic Aroma	tic Hydrocarbons (MAHs)																		
Benzene		<0.2	<0.2	<0.2	-	<0.2	-		<0.2	-	<0.2	<0.2	<0.2	<0.2		NL (g), (l)	65 (h)	120	
Toluene		<0.5	<0.5	<0.5		<0.5	-		<0.5	-	<0.5	<0.5	<0.5	<0.5		NL (g), (l)	105 (h)	18,000	
Ethylbenzen	1	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	-	<0.5	<0.5	<0.5	<0.5		NL (g), (l)	125 (h)	5,300	
Xylenes		<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	-	<0.5	<0.5	<0.5	<0.5		NL (g), (l)	45 (h)	15,000	
Napthalene	In some of the set of the Parties	<1	<1	<1	-	<1	-	-	<1	-	<1	<1	<1	<1		NL (g), (l)	170 (b), (j)	1,900	
I Otal MAHS	above detection limits	ND	ND	ND	-	ND		-	ND	-	ND	NU	ND	ND					
Total VOCc	Impounds													ND					
Total Petroleum Hy	drocarbons (TPHs)	-	-	-	-	-	-		-		-	-	-	ND					
Total Co-Cuo		<10	<10	<10		<10			<10	-	<10	<10	<10	<10					800 (b)
Total Cro-Cri		<50	<50	<50	-	<50	-	-	<50	-	<50	<50	<50	<50			120		1 000 (h)
E1 C C 1/)	<10	<10	<10		<10	-	-	<10	-	<10	<10	<10	<10		NI (g) (l)	120	5 100	1,000 (1)
F2 C C 1	2)	<10	<10	<10		<10			<10	-	<10 <e0< td=""><td>< 10</td><td><50</td><td>< 10</td><td></td><td>NL (g), (i)</td><td>100</td><td>3,000</td><td></td></e0<>	< 10	<50	< 10		NL (g), (i)	100	3,000	
F2 010-016	e)	<30	<30	<30	-	<30	-	-	<50	-	<30	<30	<30	< 30		NL (g), (i)	1 000 (h)	3,000	0.500 (1)
F4 >CC		<100	<100	<100	-	<100		-	<100	-	<100	<100	<100	<100			1,300 (h)	5,300	3,500 (h)
Total Cur-Cu		ND	~100 ND	160		ND			ND		~100 ND	ND	ND	ND			3,000 (1)	7,400	10,000 (11)
Polycyclic Aromati	c Hydrocarbons (PAHs)	110	ne	100		110			110		110	110	110	110					
Benzo(a)pyre	ne	1.5	< 0.5	1.8		< 0.5	-	-	< 0.5	-	<0.5	< 0.5	< 0.5	<0.5			0.7 (h)		
Carcinogenio	PAHs ²	2.0	<0.5	2.4	-	<0.5	-	-	<0.5	-	<0.5	<0.5	<0.5	<0.5		3			
Total PAHs a	bove detection limits	18.6	<0.5	21.2	-	<0.5	-	-	<0.5	-	<0.5	<0.5	< 0.5	<0.5		300			
Organochlorine Pe	sticides (OCPs)																		
DDT+DDE+	DDE	-	-	< 0.05	-	<0.05	-	-	-	-	-	-	-	<0.05		400	180 (b), (k)		
Aldrin + Diele	Irin	-	-	< 0.05	-	<0.05	-	-	-	-	-	-	-	<0.05		10			
Chlordane		-		<0.05	-	<0.05	-		-	-	-		-	<0.05		70			
Endoculfon				<0.05		<0.05								<0.05		340			
Endosuiran		-		<0.05		<0.05	-	-	-	-	-	-	-	<0.05		340			
Endrin		-		<0.05		<0.05			-	-		-	-	<0.05		20			
Heptachior				<0.05		<0.05				-		-		<0.05		10			
Methowichia			-	<0.05		<0.05								<0.05		400			
Mirey				-0.2		-0.2								~0.2		20			
Total OCPs	above detection limits	-	-	ND	-	ND	-	-	-	-	-	-	-	ND		20			
Organophosphoru	Pesticides (OPPs)																		
Chlorpvrifos	()	-	-	< 0.05	-	<0.05	-	-	-	-	-	-	-	<0.05		250			
Total OPPs a	bove detection limits	-	-	ND	-	ND	-	-	-	-	-	-	-	ND					
Polychlorinated Bi	ohenyls (PCB)																		
Total PCBs a	bove detection limits		-	ND		ND	-		-	-			-	ND	-	1			
Phenolic Compour	ds																		
Phenol		-		<0.5		<0.5	-	-	-	-	-	-	-	<0.5		40,000			
Pentachlorop	henol	-	-	<2		<2	-	-	-	-	-	-	-	<2		120			
Cresols		-	-	<1.5	-	<1.5	-	-	-	-	-	-	-	<1.5		4,000			
I otal Phenol	3	-	-	ND		ND	-		-	-		-	-	ND					
Ronded ACA	(why) (%)			0.11		-			-				-	-		0.02			
Eriable ashe	tos (fibrous and fines)(w/w) (%)	<0.001		0.0011					-			<0.001	-	-		0.02			
Asbestos Tv	08	ND		CH	-	-	-	-	-	-	-	CH	-	-		0.001			

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL C/HSL C (Recreational / Public Open Space) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL C Open Space) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting

Results shaded purple exceed both the NEPM 2013 HIL/HSL C (Recreational / Public Open Space) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL (c) NEPM 2013 site-specific EIL (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available

(e) F1 TPH = TPH (C6-C10) minus BTEX fraction (f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solutions

(n) Criterion for inorganic mercury

	Borehole No./ Site Lo	ocation:	BH22	BH22	BH22	BH22	BH22	BH23	BH23	BH23	BH23	BH23	BH25	BH25	BH25				000 0005 0044	
_	Sam	ple No.:	S84	S85	S86	S87	S88	S89	S92	S93	S94	S95	S101	S104	S105	NEPM Background	NEPM 2013 HIL C / HSL C (Recreational / Public Open	ESLs (Urban	HSL-C (Recreational /	Management Limits
		Depth:	0.2 m	0.5 m	1.5 m	2.0 m	3.0 m	0.2 m	0.8 m	1.5 m	2.0 m	3.0 m	0.5 m	1.0 m	2.0 m	Ranges	Space)	Residential and Public	Open Space) Direct Contact	(Residential, Parkland & Public Open Space)
Analytes	Date Sa	ampled:	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19				Direct Contact	
Metals																				
Arsenic			5	4	-	-	2	3	6	-	5	6	7	6	2	1-50	300	100 (b), (i)		
Cadmium			<0.3	<0.3	-	-	<0.3	0.4	0.6	-	<0.3	<0.3	<0.3	<0.3	<0.3	1	90	3 (d)		
Chromium			0.0	10			3.9	84-	10	-	11	1.2	12	14	3.3	5-1000	300 (m)	55U (C), (O)		
Load			<u>24</u> 55	12			7	20	73		12	9.4	19	1.5	2	2-100	600	95 (C) 1 100 (b) (i)		
Mercury			0.07	<0.05			<0.05	<0.05	0.12		<0.05	<0.05	<0.05	<0.05	<0.05	2-200	80 (n)	1,100 (b), (i)		
Nickel			6.1	1.9	-	-	7.1	46	9.8	-	2.5	2.4	15	4.3	<0.5	5-500	1.200	200 (c)		
Zinc			50	4.6	-	-	15	110	87	-	8.6	7.6	28	6.7	<2.0	10-300	30.000	510 (c)		
Monocyclic Aroma	tic Hydrocarbons (MAHs)																			
Benzene			<0.2	-	-	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1		NL (g), (l)	65 (h)	120	
Toluene			<0.5		-	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1		NL (g), (l)	105 (h)	18,000	
Ethylbenzen	9		<0.5	-	-	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1		NL (g), (l)	125 (h)	5,300	
Xylenes			<0.5	-	-	-	<0.3	<0.3	<0.3	-	-	<0.3	<0.3	<0.3	<0.3		NL (g), (l)	45 (h)	15,000	
Napthalene	- In second state at the Provide		<1	-	-	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1		NL (g), (l)	170 (b), (h	1,900	
I Otal MAHS	above detection limits		ND	-	-	-	ND	ND	ND	-	-	ND	ND	NU	ND					
Volatile Organic Co	ompounds																			
Total Petroleum Hy	(drocarbons (TPHs)		-	-	-	-		-	-	-	-	-	-	-	-					
Total Co-Cu	diocarbons (TFTIs)		<25	-	-	-	<25	<25	<25	-	-	<25	<25	<25	<25					800 (b)
Total Co. Co			<25				<25	<25	<25			<25	<25	<25	<25			120		1 000 (h)
E1 C C 1/	4)		<25	-	-	-	<25	<25	<25	-	-	<25	<25	<25	<25		NI (g) (l)	120	5 100	1,000 (11)
F106-010 (0	1)		<25	-	-	-	<25	<25	<25	-	-	<25	<25	<25	<25		NL (g), (l)	180	3,100	
F2 010-016	(e)		< <u>23</u>	-	-	-	×23	×20	\$25	-	-	~23	×23	<23 100	×23		NL (g), (i)	4 000 (%)	3,000	0.500 (1)
F4 >C++C++			<120	-	-	-	<120	<120	<120	-	-	<120	<120	<120	<120			1,300 (II) 5,600 (b)	7.400	10,000 (h)
Total Cur-Cu			220	-			ND	ND	110			ND	~120 ND	~120 ND	ND			3,000 (11)	7,400	10,000 (11)
Polycyclic Aromati	c Hydrocarbons (PAHs)		LLU				110	110	110			110	110	110	110					
Benzo(a)pyre	ane		7.3	-	-	-	<0.1	2.5 ³	4.0	-	-	<0.1	1.5	<0.1	<0.1			0.7 (h)		
Carcinogenio	PAHs ²			-	-	-	<0.2		5.4	-	-	<0.2	2.0	<0.2	<0.2		3			
Total PAHs a	above detection limits		92		-	-	ND	41.4 ³	53.0	-	-	0.8	15	ND	ND		300			
Organochlorine Pe	sticides (OCPs)																			
DDT+DDE+	DDE		-	-	-	-	-	-	<0.6	-	-	<0.6	-	<0.6	-		400	180 (b), (k)		
Aldrin + Diel	drin		-	-	-	-	-	-	< 0.3	-	-	< 0.3	-	< 0.3	-		10			
Chlordane			-				-	-	<0.2	-	-	<0.2	-	<0.2			70			
Endoculfan									<0.5			<0.5		<0.5			340			
Endosunan				-	-	-		-	<0.0	-	-	<0.0	-	<0.0	-		340			
Enulin			-	-	-	-	-	-	10.2	-	-	<0.2	-	<0.2 -0.4	-		20			
Heptachior				-	-	-		-	<0.1	-	-	<0.1	-	<0.1	-		10			
Methovychla	r			-				-	<0.1			<0.1	-	<0.1			400			
Mirey					-	-	-		<0.1	-	-	<0.1	-	<0.1						
Total OCPs	above detection limits			-	-	-		-	ND	-	-	ND	-	ND			20			
Organophosphoru	s Pesticides (OPPs)																			
Chlorpyrifos			-	-	-	-	-	-	<0.2	-	-	<0.2	-	<0.2	-		250			
Total OPPs a	above detection limits		-	-	-	-	-	-	ND	-	-	ND	-	ND	-					
Polychlorinated Bi	phenyls (PCB)																			
Total PCBs a	above detection limits		-	-	-	-	-	-	ND	-	-	ND	-	ND	-		1			
Phenolic Compour	nds																			
Phenol				-	-	-	-	-	< 0.5	-	-	<0.5	-	<0.5	-		40,000			
Pentachlorop	phenol		-	-	-	-		-	< 0.5	-	-	<0.5	-	< 0.5	-		120			
Cresols	-						-	-	<1.5	-	-	<1.5	-	<1.5	•		4,000			
I otal Phenol	S			-	-	-		-	ND	-	-	ND	-	ND						
Bonded ACA	1 (w/w) (%)		<0.01	<0.01				<0.01	<0.01	-		-	<0.01	<0.01			0.02			
Eriable ashe	stos (fibrous and fines)(w/w) (%	6)	<0.001	<0.001		-		<0.001	<0.001	-	-		<0.001	<0.001			0.02			
Asbestos Tv	pe	-,	ND	ND	-	-	-	ND	ND	-	-	-	ND	ND	-		0.001			

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL C/HSL C (Recreational / Public Open Space) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL C Open Space) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting

Results shaded purple exceed both the NEPM 2013 HIL/HSL C (Recreational / Public Open Space) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL (c) NEPM 2013 site-specific EIL

(d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available (e) F1 TPH = TPH (C6-C10) minus BTEX fraction

(f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solutions

(n) Criterion for inorganic mercury

	Borehole No./ Sit	te Location:	BH25	BH26	BH26	BH26	BH26	BH26						
	ş	Sample No.:	S106	S114	S117	S118	S119	S122	NEF Backgr	PM	NEPM 2013 HIL C / HSL C (Recreational / Public Open	NEPM 2013 EILs/ ESLs (Urban	CRC CARE 2011 HSL-C (Recreational /	NEPM 2013 Management Limits
		Depth:	3.0 m	0.5 m	0.9 m	1.8 m	2.6 m	3.4 m	Rang	iges	Space)	Open Space)	Direct Contact	& Public Open Space)
Analytes	Dat	te Sampled:	20-May-19	21-May-19	21-May-19	21-May-19	21-May-19	21-May-19						
Metals														
Arsenic			3	5	6	-	9	3	1-50	0	300	100 (b), (i)		
Cadmium			<0.3	< 0.3	<0.3	-	<0.3	<0.3	1	1	90	3 (d)		
Chromium			7.3	14	11	-	16	5.9	5-1000	0	300 (m)	550 (c), (o)		
Copper			5.1	64	18	-	12	5.3	2-100	0	30,000	95 (c)		
Lead			4	58	21	-	1/	4	2-200	0	600	1,100 (b), (i)		
Mercury			<0.05	0.08	<0.05	-	<0.05	<0.05	0.03	3 (n)	80 (n)	1 (d),(n)		
INICKEI			0.8	9.6	5.8	-	3.0	0.7	5-500	0	1,200	200 (c)		
ZINC Monocyclic Aromati	ic Hydrocarbone (MAH	e)	2.3	33	10	-	7.5	3.1	10-300	0	30,000	510 (C)		
Renzene	ic nyurocarbons (wans	5)			<0.1	-	<0.1	<0.1			NI (a) (l)	65 (b)	120	
Toluene			-		<0.1	-	<0.1	<0.1			NL (g) (l)	105 (h)	18 000	
Ethylbenzene			-		<0.1	-	<0.1	<0.1			NL (g) (l)	125 (h)	5 300	
Xvienes			-	-	<0.3	-	< 0.3	< 0.3			NI (g), (l)	45 (h)	15 000	
Napthalene			-	-	<0.1	-	< 0.1	<0.1			NL (g), (l)	170 (b), (h	1.900	
Total MAHs a	bove detection limits		-	-	ND	-	ND	ND						
Volatile Organic Con	mpounds													
Total VOCs al	bove detection limits		-		-		-	-						
Total Petroleum Hyd	drocarbons (TPHs)													
Total C6-C10			-	-	<25	-	<25	<25						800 (h)
Total C10-C16			-	-	<25	-	<25	<25				120		1,000 (h)
F1 C ₆ -C ₁₀ ¹ (d)			-		<25	-	<25	<25			NL (g), (l)	180	5,100	
F2 C ₁₀ -C ₁₆ ¹ (e	e)		-	-	<25	-	<25	<25			NL (g), (l)		3,800	
F3 >C16-C34			-	-	<90	-	<90	<90				1,300 (h)	5,300	3,500 (h)
F4 >C34-C40			-	-	<120	-	<120	<120				5,600 (h)	7,400	10,000 (h)
Total C ₁₀ -C ₄₀			-	-	ND	-	ND	ND						
Polycyclic Aromatic	Hydrocarbons (PAHs)													
Benzo(a)pyrer	ne		-	-	1.0	-	<0.1	<0.1				0.7 (h)		
Carcinogenic	PAHs ²		-	-	1.4	-	<0.2	<0.2			3			
I otal PAHs at	ove detection limits		-		12	-	ND	ND			300			
Organochlorine Pes	ticides (OCPs)													
DD1+DDE+D	DE		-		-	-	<0.6	<0.6			400	180 (b), (k)		
Aldrin + Dieldr	rin		-	-	-	-	< 0.3	<0.3			10			
Chlordane			-	-	-	-	<0.2	<0.2			70			
Endosulfan			-	-	-	-	<0.5	<0.5			340			
Endrin			-	-	-	-	<0.2	<0.2			20			
Heptachlor			-	-	-	-	<0.1	<0.1			10			
HCB			-	-	-	-	< 0.1	<0.1			10			
Methoxychlor			-	-	-	-	<0.1	<0.1			400			
Mirex			-	-	-	-	<0.1	<0.1			20			
Total OCPs a	bove detection limits		-		-	-	ND	ND						
Organophosphorus	Pesticides (OPPs)													
Chlorpyrifos			-	-	-	-	<0.2	<0.2			250			
Total OPPs at	bove detection limits		-		-	-	ND	ND						
Polychlorinated Bip	henyls (PCB)													
I otal PCBs at	oove detection limits		-	-	-	-	ND	ND			1			
Prienolic Compound	15						<0.5	<0.5			40.000			
Pentachloroph	renol		-				<0.5	<0.5			40,000			
Crosole				-			<1.5	<1.5			4 000			
Total Phenols			-				ND	ND			4,000			
Ashestos				-		-								
Bonded ACM	(w/w) (%)		-	< 0.01	< 0.01	-	-	-			0.02			
Friable asbest	los (fibrous and fines)(w/	N) (%)	-	< 0.001	< 0.001	-	-	-			0.001			
Asbestos Tvo	0		-	ND	ND	-	-	-						

Notes Results in mg/kg unless specified otherwise.

ND = No individual species detected above laboratory detection limits.

No* = No asbestos found at the reporting limit of 0.1 g/kg by polarised light microscopy. Asbestos material detected and identified at conc. below 0.1 g/kg.

1 Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

³ Duplicate value adopted due to RPD exceedance

Results shaded red exceed the NEPM 2013 HIL C/HSL C (Recreational / Public Open Space) criteria

Results shaded blue exceed the NEPM 2013 EIL/ESL criteria for an urban residential and public open space setting

Results shaded green exceed the CRC CARE 2011 HSL C Open Space) criteria for direct contact with soil

Results shaded yellow exceed the NEPM 2013 management limits for a residential, parkland and public open space land setting

Results shaded purple exceed both the NEPM 2013 HIL/HSL C (Recreational / Public Open Space) and the NEPM 2013 EIL/ESL criteria

(a) ANZECC 1992 background ranges used where no NEPM criteria available

(b) NEPM 2013 generic EIL
 (c) NEPM 2013 site-specific EIL
 (d) NEPM 1999 EIL used where no generic NEPM 2013 criteria are available
 (e) F1 TPH = TPH (C6-C10) minus BTEX fraction

(f) F2 TPH = TPH (C10-C16) minus naphthalene fraction

(g) NEPM 2013 HSL criterion for vapour intrusion, 0m to <1m depth in clay

(h) Criterion for fine texture grade soils

(i) Criterion for 'aged' contamination

(j) Insufficient data available to calculate 'aged' contamination. The values for fresh contamination should be used

(k) Criterion for DDT

 NL= Contaminant is not considered to pose a risk to human health through vapour inhalation regardless the concentration (m) Criterion for chromium VI

GeoEnvironmental

Geotechnical and Environmental Solutions

(n) Criterion for inorganic mercury

Table C Analytical Results for Soil Samples - 2019 Detailed Site Investigation

Boreho	e No./ Site Location:	BH1/MW1	BH16/MW2	MW3	MW4	BH7/MW5		Australian & New Zealand	NHRMC/NRMMC	NHRMC/NRMMC
	Sample No.:	GW1-1	GW2-1	GW3-1	GW4-1	GW5-1	NEPM 2013 Groundwater HSLs for Vapour Intrusion	Guidelines for Fresh and Marine Water Quality 2018	Australian Drinking Water Guidelines 2011	Australian Drinking Water Guidelines 2011
Analytes	Date Sampled:	20-May-19	20-May-19	20-May-19	20-May-19	20-May-19		Marine Water Values	(2018 updated) Health Guidance Value	(2018 updated) Aesthetics Value
Metals Arsenic		<1	<1	1	2	<1		2.3 (a), (b)		
Cadmium Chromium (Total)		<0.1	<0.1	<0.1	<0.1 <1	1.1		5.5 4.4 (c)	2 50 (c)	
Copper		<1	1	ব	4	त		1.3	2,000	
Mercury		<0.1	<0.1	<0.1	<0.1	<0.1		4.4 0.4 (d)	1	
Zinc		7	8	45	<5	36		15	20	3,000
Volatile Organic Compounds (VOC Total Xylenes	s)	<1.5	<1.5	<1.5	<1.5	<1.5	NL (f), (g)		600	20
Total BTEX Total VOCs		<3 ND	<3 ND	<3	<3 ND	<3 ND				
Fumigants (VOCs) 2,2-dichloropropane		<0.5	<0.5	<0.5	<0.5	<0.5				
1,2-dichloropropane cis-1,3-dichloropropene		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5		900 0.8 (l)	100 (i)	
trans-1,3-dichloropropene 1.2-ditromoethane (EDB)		<0.5	<0.5	<0.5	<0.5	<0.5		0.8 (l)	100 (l)	
Halogenated Aliphatics (VOCs)	12)	-0.0	-0.0	-0.0	-0.0	-0.0 >E				
Chloromethane	(2)	<5	<5	4	<	<5				
Bromomethane		<0.3	<0.3	<0.3 <10	<0.3 <10	<0.3		100	0.3	
Chloroethane Trichlorofluoromethane		<5	<5	<5	<5	<5				
Iodomethane 1,1-dichloroethene		<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5		700	30	
Dichloromethane (Methylene	Chloride)	<5	<5	<5	<5	<5		4,000	4	
trans-1,2-dichloroethene		<0.5	<0.5	<0.5	<0.5	<0.5			60 (m)	
1,1-dichloroethane cis-1,2-dichloroethene		<0.5	<0.5	<0.5	<0.5 <0.5	<0.5			60 (m)	
1,2-dichloroethane		<0.5	<0.5	<0.5	<0.5 <0.5	<0.5		1,900	3	
1,1,1-Trichloroethane (1,1,1-T 1,1-dichloropropene	CA)	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5		270		
Carbon Tetrachloride Trichloroethene (TCE)		<0.5	<0.5	<0.5	<0.5	<0.5		240	3	
1,1,2-trichloroethane		<0.5	<0.5	<0.5	<0.5	<0.5		1,900		
Tetrachloroethene (PCE)		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5		1,100	100 50	
1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene		<0.5	<0.5	<0.5	<0.5 <1	<0.5				
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5		400 (h)		
trans-1,4-dichloro-2-butene		<1	<1	<1	<1	<1				
Hexachlorobutadiene		<0.5	<0.5	<0.5	<0.5	<0.5			0.7	
Halogenated Aromatics (VOCs) Chlorobenzene		<0.5	<0.5	<0.5	<0.5	<0.5			300	
2-Chlorotoluene		<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5				
4-Chlorotoluene 1,3-dichlorobenzene		<0.5	<0.5	<0.5	<0.5 <0.5	<0.5		260		
1,4-dichlorobenzene 1,2-dichlorobenzene		<0.3	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5		60 160	40	
1,2,4-trichlorobenzene 1,2,3-trichlorobenzene		<0.5	<0.5 <0.5	<0.5	<0.5	<0.5		20	30 (n) 30 (n)	
Monocyclic Aromatic Hydrocarbon	s (VOCs)	-0.0	-0.5	-0.5	-0.0	-0.5	5 000	700	55 (ii)	
Toluene		<0.5	<0.5	<0.5	<0.5	<0.5	NL (f), (g)	180	800	25
m/p-xylene		<0.5	<1	<1	<1	<0.5	NE (I), (g)	5 75 (e)	300	3
Vinyl benzene (Styrene)		<0.5	<0.5	<0.5	<0.5 <0.5	<0.5		350	30	4
Isopropylbenzene (Cumene) n-propylbenzene		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		30		
1,3,5-trimethylbenzene tert-butylbenzene		<0.5	<0.5 <0.5	<0.5	<0.5	<0.5				
1,2,4-trimethylbenzene sec-butylbenzene		<0.5	<0.5	<0.5	<0.5	<0.5				
p-isopropyltoluene		<0.5	<0.5	<0.5	<0.5	<0.5				
Nitrogenous Compounds (VOCs)		<0.5	<0.5	<0.5	<0.5	<0.5		-		
2-nitropropane		<0.5	<0.5 <100	<0.5 <100	<0.5 <100	<0.5		8		
Oxygenated Compounds (VOCs) 2-propanone (Acetone)		<10	<10	<10	<10	<10				
Vinyl acetate		<2	<2	<2 <10	<2	<2				
2-butanone (MEK) 4-methyl-2-pentanone (MIBK)		<10	<10	<10	<10	<10				
2-hexanone (MBK)		<5	<5	<5	<5	<5				
naphthalene		<0.5	<0.5	<0.5	<0.5	<0.5				
carbon disulfide		<2	<2	<2	<2	<2		20		
Chioroform		<0.5	<0.5	<0.5	<0.5	<0.5		370		
Dibromochloromethane		<0.5	<0.5	<0.5	<0.5	<0.5				
Trihalomethanes (total)		<0.5 ND	<0.5 ND	<0.5 ND	<0.5 ND	<0.5 ND			250	
Total Petroleum Hydrocarbons (TP Total Ce-C 10	Hs)	<50	<50	100	50	<50		7 (b)		
Total C10°C16 F1 C5°C10		<60 <50	<60 <50	<60 100	95 <50	<60 <50	NL (f), (g)			
F2 C ₁₀ -C ₁₆ F3 >C ₁₀ -C ₁₆		<60 <500	<60 <500	<60 <500	94	<60 <500	NL (f), (g)			
F4 >C34-C40		<500	<500	<500	<500	<500		7 (b)		
Polycyclic Aromatic Hydrocarbons	(PAHs)	<0.1	<0.1	<0.1	-01	<0.1		70		
2-methylnaphthalene		<0.1	<0.1	<0.1	<0.1	<0.1		10		
1-metnyinaphthalene Acenaphthylene		<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1				
Acenaphthene Fluorene		<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	 			
Phenanthrene Anthracene		<0.1	<0.1	<0.1 <0.1	0.3 <0.1	<0.1		0.6		
Fluorathene		<0.1	<0.1	<0.1	<0.1 0.2	<0.1		1		
Benzo(a)anthracene		<0.1	<0.1	<0.1	0.4	<0.1			0.1 (k)	
Benzo(b&j)fluorathene		<0.1	<0.1	<0.1	U.2 0.1	<0.1			1 (k) 0.1 (k)	
Benzo(k)fluorathene Benzo(a)pyrene		<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	 	0.1	0.1 (k) 0.01	
Indeno(1,2,3-cd)pyrene dibenzo(ah)anthracene		<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	 		0.1 (k) 0.01 (k)	
Benzo(ghi)perylene Total PAHs above detection li	mits	<0.1 ND	<0.1 ND	<0.1 ND	<0.1 1.2	<0.1 ND			1 (k)	

otes Results in µg/L unless specified otherwise.
ND = No individual species detected above laboratory detection limits.

ND = No individual species detected above laboratory detection limits.
¹ Duricetar values adopted da to RPG acceedance
Results shaded Olive exceed the NEPM 2013 Vapour Intrusion GLB HSLA & HSLB for Low-High Desnaity Residentia
Results shaded Olive exceed the Australian & New Zasland Guidelines for Fresh and Marine Water Quality 2018 - Marine Water Values
Results shaded Olive exceed the NHRM/CNRMMC Australian Drinking Water Guidelines 2011 (2014 guidate) - Health Guidance Value
Results shaded guide exceed the NHRM/CNRMMC Australian Drinking Water Guidelines 2011 (2014 guidate) - Health Guidance Value
Results shaded guide exceed the NHRM/CNRMMC Australian Drinking Water Guidelines 2011 (2014 guidate) - Acethetics Value
Results shaded guide exceed both he Fresh and Marine Water Quality 2018 and the Australian Drinking Water 2011 - Health Guidance Values
Results shaded guide) exceed both he Fresh and Marine Water Quality 2018 and the Australian Drinking Water 2011 - Aesthetics Values
Results shaded dire due exceed both he Fresh and InDrinking Water 2011 - Health Guidance Values
Results shaded dire due exceed both the Fresh and InDrinking Water 2011 - Health Guidance Values
Results shaded dire Values could both fresh and InDrinking Water 2011 - Health Guidance and Aesthetics Values
Results shaded black exceed all assessment criteria

(f) criterion for clay solls, 2m - 4m (g) N = C-ortanism in not considered to pose a risk to human health through vapour inhalation regardless the concentration (G) Frestwater dericino value adoption line uf marine water value (i) F = 17H (Cp-Ca) minus BTEX fraction (i) F ≥ 1 7HH (Cp-Ca) minus BTEX fraction (i) F ≥ 1 7HH (Cp-Ca) minus BTEX fraction (i) Fisk assessment criteria based on carcinogenic potency relative to (i) Fisk

- Benzo(a)pyrene
- (I) Criterion for 1,3-dichloropropene (total) (m) Criterion for 1,2-dichloroethene (total) (n) Criterion for trichlorobenzene (total)

Table D Analytical Results for Soil Samples - 2019 Acid Sulfate Soil Assessment

	Borehole No./ Site Location:	BH21	BH22	BH22	BH22	BH22												
	Sample No.:	ASS1	ASS2	ASS3	ASS4	ASS5	ASS6	ASS7	ASS8	ASS9	ASS10	ASS11	ASS12	ASS13	ASS14	ASS15	Field ASS	Acid Sulfate
	Depth:	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	0.5	1.0	1.5	2.0	Indicator ¹	Criteria ²
Analytes	Date Sampled:	20-May-19																
Field ASS / PASS Ind	licators																	
pH _f (pH unit	s)	10.6	11.0	9.4	10.1	-	9.5	8.4	8.4	8.8	8.4	9.1	7.1	5.7	5.7	5.4	< 4	-
pH _{ox} (pH uni	ts)	10.0	10.0	7.1	8.1	-	7.3	6.5	7.0	7.1	6.6	6.9	3.3	2.9	3.1	3.9	< 3	-
Reaction Ra	te (No unit)	XXXX	XXXX	XXX	XXX	-	XXX	XXX	XX	XX	XXX	XXX	XXX	XXX	XXX	XX	XXX	-
pH Difference	e (pH units)	0.6	1.0	2.3	2.0	-	2.1	1.9	1.4	1.7	1.8	2.2		2.8	2.6	1.5	> 1	-
Chromium Reducible	e Sulphur Suite																	
Chromium F	Reducible Sulfur (%)	-	-	-	-	-	-	< 0.005	-	-	< 0.005	-	0.014	0.063	0.022	< 0.005	-	-
Net Acidity (Sulfur units) %S	-	-	-	-	-	-	< 0.01	-	-	< 0.01	-	0.03	0.16	0.08	0.01	-	0.03
Net Acidity (Acidity units) Mol H*/tonne	-	-	-	-	-	-	<5	-	-	<5	-	21	99	51	9	-	18
Net Acidity E	Excluding ANC (Acidity units) Mol H*/tonne	-	-	-	-	-	-	<5	-	-	<5	-	21	99	51	9	-	18
Liming Rate	Inc. ANČ (kg CaCO ₃ /tonne)	-	-	-	-	-	-	<0.1	-	-	<0.1	-	1.6	7.4	3.8	N/A	-	-
Liming Rate	Exc ANC (kg CaCO ₃ /tonne)	-	-	-	-	-	-	<0.1	-	-	<0.1	-	1.6	7.4	3.8	N/A	-	-

Notes: 1 Sullivan et al (2018) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual; Indicators of ASS materials

² ASSMAC Acid Sulfate Soil Manual (1998); Action Criteria for coarse texture grade soils

Results shaded red exhibit possible field indications of Actual or Potential Acid Sulfate Soils

	Borehole No./ Site Location:	BH22	BH22	BH22	BH23	BH24												
-	Sample No.:	ASS16	ASS17	ASS18	ASS19	ASS20	ASS21	ASS22	ASS23	ASS24	ASS25	ASS26	ASS27	ASS28	ASS29	ASS30	Field ASS	Acid Sulfate
-	Depth:	2.5	3.0	3.5	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	0.5	Indicator ¹	Criteria ²
Analytes	Date Sampled:	20-May-19																
Field ASS / PASS Ir	ndicators																	
pH _f (pH un	its)	6.1	6.4	6.5	7.0	7.8	6.7	5.7	8.2	5.5	6.6	7.1	7.4	7.1	7.3	5.7	< 4	-
pH _{ox} (pH u	nits)	5.6	5.5	6.0	5.3	6.4	3.8	3.5	6.2	4.1	5.7	5.8	6.0	5.9	6.0	4.1	< 3	-
Reaction R	Rate (No unit)	XX	XX	XX	XX	XX	XXX	XXX	XX	XXX	-							
pH Differer	nce (pH units)	0.5	0.9	0.5	1.7	1.3		2.2	2.0	1.4	0.9	1.3	1.4	1.2	1.4	1.6	> 1	-
Chromium Reducib	ole Sulphur Suite																	
Chromium	Reducible Sulfur (%)	-	-	-	-	< 0.005	0.014	0.006	-	< 0.005	-	-	-	-	-	-	-	-
Net Acidity	(Sulfur units) %S	-	-	-	-	<0.01	0.04	0.05	-	0.04	-	-	-	-	-	-	-	0.03
Net Acidity	(Acidity units) Mol H*/tonne	-	-	-	-	<5	26	29	-	25	-	-	-	-	-	-	-	18
Net Acidity	Excluding ANC (Acidity units) Mol H*/tonne	-	-	-	-	<5	26	29		25	-	-	-	-	-		-	18
Liming Rat	te Inc. ANC (kg CaCO ₃ /tonne)	-	-	-	-	<0.1	2.0	2.1	-	1.9	-	-	-	-	-	-	-	-
Liming Rat	te Exc ANC (kg CaCO₃/tonne)	-	-	-	-	<0.1	2.0	2.1	-	1.9	-	-	-	-	-	-	-	-

Analytical Results for Soil Samples - 2019 Acid Sulfate Soil Assessment Table D

Notes: 1 Sullivan et al (2018) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual; Indicators of ASS materials

² ASSMAC Acid Sulfate Soil Manual (1998); Action Criteria for coarse texture grade soils

Results shaded red exhibit possible field indications of Actual or Potential Acid Sulfate Soils

Table D Analytical Results for Soil Samples - 2019 Acid Sulfate Soil Assessment

	Borehole No./ Site Location:	BH24	BH24	BH24	BH24	BH24	BH24	BH24A	BH24A	BH25								
	Sample No.:	ASS31	ASS32	ASS33	ASS34	ASS35	ASS36	ASS47	ASS48	ASS37	ASS38	ASS39	ASS40	ASS41	ASS42	ASS43	Field ASS	Acid Sulfate
	Depth:	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	0.5	1.0	1.5	2.0	2.5	3.0	3.5	Indicator ¹	Criteria ²
Analytes	Date Sampled:	20-May-19																
Field ASS / PASS Inc	dicators																	
pH _f (pH unit	s)	5.0	5.9	7.2	7.5	6.9	7.5	7.4	7.5	7.1	6.9	5.1	5.2	5.5	6.5	6.1	< 4	-
pH _{ox} (pH un	its)	4.0	4.9	5.9	5.9	5.6	6.5	8.0	8.0	4.7	5.0	3.5	4.1	4.6	5.5	5.6	< 3	-
Reaction Ra	ate (No unit)	XX	XX	XX	XX	XX	XXX	XXXX	XXXX	XXX	XX	XX	XX	XX	XX	Х	XXX	-
pH Differen	ce (pH units)	1.0	0.7	1.4	1.5	1.3	1.0	-0.6	-0.5	2.4	2.0	1.5	1.1	0.9	1.0	0.4	> 1	-
Chromium Reducible	e Sulphur Suite																	
Chromium F	Reducible Sulfur (%)	-	-	-	-	-	-	-	-	-	-	< 0.005	< 0.005	-	-	-	-	-
Net Acidity ((Sulfur units) %S	-	-	-	-	-	-	-	-	-	-	0.18	0.02	-	-	-	-	0.03
Net Acidity ((Acidity units) Mol H*/tonne	-	-	-	-	-	-	-	-	-	-	110	12	-	-	-	-	18
Net Acidity	Excluding ANC (Acidity units) Mol H*/tonne	-	-	-	-	-	-	-	-	-	-	110	12	-	-	-	-	18
Liming Rate	e Inc. ANC (kg CaCO ₃ /tonne)	-	-	-	-	-	-	-	-	-	-	8.3	N/A	-	-	-	-	-
Liming Rate	e Exc ANC (kg CaCO₃/tonne)	-	-	-	-	-	-	-	-	-	-	8.3	N/A	-	-	-	-	-

Notes: 1 Sullivan et al (2018) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual; Indicators of ASS materials

² ASSMAC Acid Sulfate Soil Manual (1998); Action Criteria for coarse texture grade soils

Results shaded red exhibit possible field indications of Actual or Potential Acid Sulfate Soils

Table D Analytical Results for Soil Samples - 2019 Acid Sulfate Soil Assessment

	Borehole No./ Site Location:	BH25	BH25	BH25		
-	Sample No.:	ASS44	ASS45	ASS46	Field ASS	
-	Depth:	4.0	4.5	5.0	Indicator	1
nalytes	Date Sampled:	20-May-19	20-May-19	20-May-19		
ield ASS / PASS I	ndicators				-	
pH _f (pH ur	nits)	6.7	6.7	7.2	< 4	
pH _{ox} (pH ι	inits)	5.3	5.8	5.8	< 3	
Reaction I	Rate (No unit)	XX	Х	XX	XXX	
pH Differe	nce (pH units)	1.4	1.0	1.4	> 1	
hromium Reduci	ble Sulphur Suite					
Chromium	Reducible Sulfur (%)	-	-	-	-	
Net Acidit	(Sulfur units) %S	-	-	-	-	
Net Acidit	(Acidity units) Mol H*/tonne	-	-	-	-	
Net Acidit	Excluding ANC (Acidity units) Mol H*/tonne	-	-	-	-	
Liming Ra	te Inc. ANC (kg CaCO ₃ /tonne)	-	-	-	-	
Liming Ra	te Exc ANC (kg CaCO ₃ /tonne)	-	-	-	-	

Notes: 1 Sullivan et al (2018) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual; Indicators of ASS materials

² ASSMAC Acid Sulfate Soil Manual (1998); Action Criteria for coarse texture grade soils

Results shaded red exhibit possible field indications of Actual or Potential Acid Sulfate Soils

Table F: Results of Quality Control - Intra and Inter-Laboratory Duplicate Groundwater Samples

	Sample No.:	GW2-1	GW2-2 ¹		GW2-1*	GW2-3 ²	
Analytes	Date Sampled:	20-May-19	20-May-19	- RPD (%)	20-May-19	20-May-19	RPD (%)
Metals							
Arsenic		<1	<1	<50	<1	<1	<50
Cadmium		<0.1	<0.1	<50	<0.1	<0.1	<50
Chromium (Total)		<1	<1	<50	<1	<1	<50
Copper		1	2	<50	1	<1	<50
Lead		<1	<1	<50	<1	<1	<50
Mercury		<0.1	<0.1	<50	<0.1	<0.1	<50
Nickel		<1	<1	<50	<1	<1	<50
Zinc		8	6	29	8	<5	<50
Monocyclic Aromatic Hydrocarbons (M	MAHs)						
Benzene		<0.5	<0.5	<70	<0.5	<1	<70
Toluene		<0.5	<0.5	<70	<0.5	<2	<70
Ethylbenzene		<0.5	<0.5	<70	<0.5	<2	<70
m/p-xylene		<1	<1	<70	<1	<2	<70
o-xylene		<0.5	<0.5	<70	<0.5	<2	<70
Xylenes (total)		<1.5	<1.5	<70	<1.5	<2	<70
Total Petroleum Hydrocarbons (TPHs)							
Total C ₆ -C ₁₀		<40	<40	<70	<40	<20	<70
Total C ₁₀ -C ₁₆		<60	<60	<70	<60	<100	<70
F1 C ₆ -C ₁₀		<50	<50	<70	<50	<20	<70
F2 C ₁₀ -C ₁₆		<60	<60	<70	<60	<100	<70
F3 >C ₁₆ -C ₃₄		<500	<500	<70	<500	<100	<70
F4 >C ₃₄ -C ₄₀		<500	<500	<70	<500	<100	<70
Total C ₁₀ -C ₄₀		<650	<650	<70	<650	<100	<70
Polycyclic Aromatic Hydrocarbons (PA	AHs)						
Naphthalene		<0.1	<0.1	<70	<0.1	<1.0	<70
Acenaphthylene		<0.1	<0.1	<70	<0.1	<1.0	<70
Acenaphthene		<0.1	<0.1	<70	<0.1	<1.0	<70
Fluorene		<0.1	<0.1	<70	<0.1	<1.0	<70
Phenanthrene		<0.1	<0.1	<70	<0.1	<1.0	<70
Anthracene		<0.1	<0.1	<70	<0.1	<1.0	<70
Fluoranthene		<0.1	<0.1	<70	<0.1	<1.0	<70
Pyrene		<0.1	<0.1	<70	<0.1	<1.0	<70
Benzo(a)anthracene		<0.1	<0.1	<70	<0.1	<1.0	<70
Chrysene		<0.1	<0.1	<70	<0.1	<1.0	<70
Benzo(b&j)fluoranthene		<0.1	<0.1	<70	<0.1	<1.0	<70
Benzo(k)fluoranthene		<0.1	<0.1	<70	<0.1	<1.0	<70
Benzo(a)pyrene		<0.1	<0.1	<70	<0.1	<0.5	<70
Indeno(1,2,3-cd)pyrene		<0.1	<0.1	<70	<0.1	<1.0	<70
Dibenzo(ah)anthracene		<0.1	<0.1	<70	<0.1	<1.0	<70
Benzo(ghi)perylene		<0.1	<0.1	<70	<0.1	<1.0	<70
Total PAHs above detection limi	ts	<1	<1	<70	<1	<0.5	<70

Total PAHs above detection limits Notes : Results expressed as μg/L unless otherwise indicated

¹ Denotes intra-laboratory field duplicate sample analysed by SGS Sydney
 ² Denotes intra-laboratory field duplicate sample analysed by ALS Sydney
 RPDs shaded grey exceed the acceptance criteria

Table G Results of Quality Control - Trip Spike and Trip Blank Samples

				Sample	Numbers		
	Sample No.:	Trip Spike	Trip Blank	Trip Spike	Trip Blank	Trip Spike	Trip Blank
	Medium:	Soil	Soil	Water	Water	Water	Water
Ur	nit of Measure:	%	mg/kg	%	μg/L	%	mg/kg
Analyte	_ Date Sampled:	20-May-19	20-May-19	20-May-19	20-May-19	21-May-19	21-May-19
Monocyclic Aromatic Hydrocarbor	ns (MAHs)						
Benzene		97	<0.1	100	<0.5	91	<0.1
Toluene		96	<0.1	93	<0.5	98	<0.1
Ethylbenzene		96	<0.1	98	<0.5	98	<0.1
m/p-Xylenes		96	<0.2	96	<1	92	<0.2
o-Xylenes		91	<0.1	98	<0.5	83	<0.1

Note:

Values that have been shaded exceed the acceptance criteria

Table H Soil-Specific Ecological Investigation levels

			Sample	Numbers		
Borehole No./ Site Location:	BH23	BH23	BH23	BH26	BH26	BH26
Sample No.:	EIL 1	EIL 2	EIL 3	EIL 4	EIL 5	EIL 6
Depth:	0.0 - 1.0 m	1.0 - 2.0 m	2.0 - 3.0 m	0.9 m	1.5 - 2.5 m	2.6 - 2.9 m
Soil Profile	Sandy Clay	Silty Clay	Silty Clay	Gravelly Clay	Silty Clay	Silty Clay
Analyte Date Sampled:	20-May-19	20-May-19	20-May-19	21-May-19	21-May-19	21-May-19
Clay Content						
Clay Content % (estimate) (b)	25	30	30	25	30	30
Power of Hydrogen						
pH (CaCl ₂)	7.3	6.1	4.2	8.8	6.6	4.1
Cation Exchange Capacity						
CEC	15	13	9.9	14	14	11
Total Organic Carbon						
TOC %	0.90	0.40	0.22	0.43	0.33	0.24
Soil-Specific Ecological Investigation Levels						
Chromium III	550	580	580	550	580	580
Copper	220	95	30	220	100	30
Nickel	220	200	170	210	210	180
Zinc	630	510	180	600	600	170

Notes:

(a) Results in mg/kg unless specified otherwise.

(b) Clay content estimated based on soil description

(c) EILs are generally applicable to a maximum depth of 2m

Values adopted as soil-specific Ecological Investigation Levels

Appendix D – Remediation Assessment Criteria

Table D-1 Soil Remediation Criteria

Chemical	Unit	HIL B ^{1a}	HIL C ^{1b}	HSL C ²	HSL D ³	EIL ^{3a}	ESL ^{3b}
Metals							
Arsenic – As	mg / kg	500 ⁴	300	-	-	100	-
Cadmium - Cd	mg / kg	150	300	-	-	100	-
Chromium(VI) – Cr(VI)	mg / kg	500	300	-	-	415	-
Copper – Cu	mg / kg	30,000	17,000	-	-	125	-
Lead – Pb	mg / kg	1,200	600	-	-	1260	-
Mercury – Hg (inorganic)	mg / kg	120	80	-	-	NA	-
Nickel – Ni	mg / kg	1,200	1,200	-	-	135	-
Zinc – Zn	mg / kg	60,000	30,000	-	-	350	-
Petroleum Hydrocarbons							
F1 ⁵	mg / kg	-	-	45	45	-	180
F2 ⁶	mg / kg	-	-	110	110	-	120
F3 ⁷	mg / kg	-	-	-	-	-	300
F4 ⁸	mg / kg	-	-	-	-	-	2800
Polycyclic Aromatic Hydrocarbons (PAH)							
Naphthalene	mg / kg	-	-	3	3	170	
Benzo(α)pyrene	mg / kg	-	-	-	-	-	0.7
Carcinogenic PAHs (as $B(\alpha)P$ TEQ) ⁹	TEQ	4	3	-	-	-	-
Total PAHs ¹⁰	mg / kg	400	300	-	-	-	-
Monocyclic Aromatic Hydrocarbons (BTEX)							
Benzene	mg / kg	-	-	0.5	3	-	50
Toluene	mg / kg	-	-	160	NL	-	85
Ethylbenzene	mg / kg	-	-	55	NL	-	70

Xylenes (total)	mg / kg	-	-	40	230	-	105
Organochlorine Pesticides ¹¹							
DDT+DDE+DDD	mg/kg	240	400	-	-	-	-
Other							
Organophosphorus Pesticides (OPP) ¹¹	mg/kg	N/A	N/A	-	-	-	-
PCBs	mg/kg	1	1	-	-	-	-
Asbestos							
Asbestos (friable or fines)	w / w	0.001%	0.001%	-	-	-	-
Asbestos (bonded)	w / w	0.04%	0.04%	-	-	-	-

Notes:

N/A – Not Available

NL - 'Not Limiting' - The contaminant cannot exceed the maximum allowable vapour risk due to its specific chemical solubility limit.

- 1. Health-based investigation levels:
 - a. HIL B Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments, Ref. NEPM 2013, Schedule B1, Table 1A(1).
 - b. HIL C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. Ref. NEPM 2013, Schedule B1, Table 1A(1).
- 2. Soil HSLs for vapour intrusion assuming coarse texture (sand) soils and a contamination source at 0m to <1m depth.
- 3. Ecological investigation levels:
 - a. EIL <u>Generic</u> EIL for aged Arsenic and Naphthalene, <u>Calculated</u> EILs for other metals in urban residential and public open space settings with due regard for background concentrations, soil cation exchange capacity, texture and pH, Ref. NEPM 2013, Schedule B1, Tables 1B(1) to 1B(5).
 - b. ESL Ecological Screening Level for F1, F2, F3, F4, BTEX and Benzo(a)pyrene in coarse texture soils in urban residential and public open space settings, Ref. NEPM 2013, Schedule B1, Table 1B(6).
- 4. Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer Schedule B7).
- 5. F1: concentration of TPH C_6 - C_{10} fraction minus the sum of BTEX concentrations.
- 6. F2: concentration of TPH $>C_{10}-C_{16}$ fraction minus the concentration of Naphthalene.
- 7. F3: concentration of TPH $>C_{16}-C_{34}$.
- 8. F4: concentration of TPH $>C_{34}-C_{40}$.
- 9. Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.
 Criteria to be updated for any detected pesticides.

eiaustralia

Contaminant	Maximum Values of <i>Speci</i> for Classifica	fic Contaminant Concentration tion <u>without</u> TCLP
	General Solid Waste CT1 (mg/kg)	Restricted Solid Waste CT2 (mg/kg)
Arsenic	100	400
Asbestos	"Special Waste - Asbestos	Waste" if ANY Asbestos is present
Benzene	10	40
Benzo(a)pyrene	0.8	3.2
Cadmium	20	80
Chromium (VI)	100	400
Cyanide (amenable)	70	280
Ethylbenzene	600	2,400
Lead	100	400
Mercury	4	16
Nickel	40	160
Petroleum hydrocarbons C ₆ -C ₉	650	2,600
Petroleum hydrocarbons C10-C36	10,000	40,000
Polychlorinated biphenyls (PCB)	<50	<50
Polycyclic aromatic hydrocarbons (total PAH)	200	800
Tetrachloroethylene (PCE)	14	56
Toluene	288	1,152
Trichloroethylene (TCE)	10	40
Vinyl Chloride (VC)	4	16
Xylenes (total)	1,000	4,000

Table D-2 Waste Classification without Leachate Testing

Note: N/A = not applicable (assessed using SCC1 and SCC2 values, only) see Table C-3

Contaminant	Maximum Values of <i>Speci</i> for Classifica	fic Contaminant Concentration tion <u>without</u> TCLP
	General Solid Waste CT1 (mg/kg)	Restricted Solid Waste CT2 (mg/kg)
Arsenic	100	400
Asbestos	"Special Waste - Asbestos	Waste" if ANY Asbestos is present
Benzene	10	40
Benzo(a)pyrene	0.8	3.2
Cadmium	20	80
Chromium (VI)	100	400
Cyanide (amenable)	70	280
Ethylbenzene	600	2,400
Lead	100	400
Mercury	4	16
Nickel	40	160
Petroleum hydrocarbons C6-C9	650	2,600
Petroleum hydrocarbons C10-C36	10,000	40,000
Polychlorinated biphenyls (PCB)	<50	<50
Polycyclic aromatic hydrocarbons (total PAH)	200	800
Tetrachloroethylene (PCE)	14	56
Toluene	288	1,152
Trichloroethylene (TCE)	10	40
Vinyl Chloride (VC)	4	16
Xylenes (total)	1,000	4,000

Table D-3 Waste Classification without Leachate Testing

Note: N/A = not applicable (assessed using SCC1 and SCC2 values, only) see Table C-3

at	ble	D-4	V

Table Waste Classification using TCLP and SCC Values .

Contaminant

Maximum Values for Leachable Concentration and Specific Contaminant Concentration when used together

	General S	Solid Waste	Restricted	Solid Waste
	Leachable Concentration	Specific Contaminant Concentration	Leachable Concentration	Specific Contaminant Concentration
	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)
Arsenic	5.0	500	20	2,000
Asbestos	"Specia	I Waste - Asbestos Wa	aste" if ANY Asbestos i	s present
Benzene	0.5	18	2	72
Benzo(a)pyrene	0.04	10	0.16	23
Cadmium	1.0	100	4	400
Chromium (VI)	5	1,900	20	7,600
Cyanide (amenable)	3.5	300	14	1,200
Ethylbenzene	30	1,080	120	4,320
Lead	5	1,500	20	6,000
Mercury	0.2	50	0.8	200
Nickel	2	1,050	8	4,200
Petroleum hydrocarbons C ₆ -C ₉	N/A	650	N/A	2,600
Petroleum hydrocarbons C ₁₀ -C ₃₆	N/A	10,000	N/A	40,000
Polychlorinated biphenyls (PCB)	N/A	<50	N/A	<50
Polycyclic aromatic hydrocarbons (total PAH)	N/A	200	N/A	800
Tetrachloroethylene (PCE)	0.7	25.2	2.8	100.8
Toluene	14.4	518	57.6	2,073
Trichloroethylene (TCE)	0.5	18	2	72
Vinyl Chloride (VC)	0.2	7.2	0.8	28.8
Xylenes	50	1,800	200	7,200

Note: N/A = not applicable (assessed using SCC1 and SCC2 values, only)

Table D-5	Groundwater Remediation Criteria					
Analyte	Unit	PQL	Aquatic Ecosystems Marine, 95% Level of Protection ^{2a}	Recreational Use Primary and Secondary Contact Recreation ³		
Heavy Metals						
Arsenic	µg/L	1	13 ⁵	50		
Cadmium	µg/L	0.1	0.7 6	5		
Chromium (Total	l) µg/L	1	27 ⁷	50		
Copper	µg/L	1	1.3	1,000		
Lead	µg/L	1	4.4 ⁶	50		
Mercury (inorgan	nic) µg/L	0.1	0.1 ^{2b}	1		
Nickel	µg/L	1	7 ⁶	100		
Zinc	µg/L	5	15 ⁶	5,000		
TRHs						
F1	µg/L	50	50 ⁸	NV		
F2	µg/L	60	60 ⁸	NV		
F3	µg/L	500	500 ⁸	NV		
F4	µg/L	500	500 ⁸	NV		
PAHs						
Naphthalene	µg/L	0.1	50	NV		
Benzo(α)pyrene	µg/L	0.1	0.1 ^{2b,9}	0.01		
Total PAHs	µg/L	1	NV	NV		
BTEX						
Benzene	µg/L	0.5	500	10		
Toluene	μg/L	0.5	-	NV		
Ethylbenzene	µg/L	0.5	-	NV		
Xylenes (total)	µg/L	0.5	-	NV		

Phenols			
Total Phenols	µg/L	400	-

Notes:

All concentrations are shown in units of μ g/L

¹ Groundwater remediation criteria may be expanded during data gap closure assessment to include VOCs criteria and updated recreational criteria.

^{2a} Marine, 95% Level of Protection – National Water Quality Management Strategy (NWQMS), Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (ANZECC and ARMCANZ), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, October 2000 (ANZECC 2000).

^{2b} Marine, 99% Level of Protection to account for bioaccumulation – National Water Quality Management Strategy (NWQMS), Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (ANZECC and ARMCANZ), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, October 2000 (ANZECC 2000).

³ Primary and Secondary Contact Recreation - NWQMS, ANZECC and ARMCANZ, ANZECC 2000

⁴ Australian Standard AS 2159-2009 – Piling – Design and Installation

⁵ Arsenic criteria is based on Arsenic V species value

⁶ Metal criteria for cadmium, chromium, copper, lead, nickel, and zinc have not been adjusted for CaCO₃ and should be adjusted subject to site specific groundwater hardness.

⁷ Chromium (total) criteria is based on chromium III value.

⁸ In absence of criteria for the preferred laboratory (SGS Australia) PQL has been used.

⁹ Low reliability trigger value is adopted.

NV – No value is available in ASC NEPM 2013, Schedule B1, Guidelines on Investigation Levels for Soil and Groundwater.

NL - Not Limiting. The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical.

Appendix E – Remedial Technology

REVIEW OF REMEDIATION OPTIONS & TECHNOLOGIES

A number of soil remediation options were reviewed to examine the suitability of each method, in considering the remedial options available for the site, the surrounding lands and the geological and hydrogeological limitations, the following issues have been considered:

- Prioritisation of works in areas of most concern;
- Ability of remedial method to treat contamination with respect to natural and infrastructure limitations;
- Remedial timetable;
- Cost effectiveness;
- Defensible method to ensure the site is remediated to appropriate levels / validation criteria; and
- Regulatory compliance.

The following sections provide details on various remediation options for the material found on site.

E1 FILL, SOILS & RESIDUAL CLAYS

E1.1. BIOVENTING

Bioventing stimulates the natural in situ biodegradation of aerobically degradable compounds in soil by increasing oxygen flow to existing soil microorganisms. In contrast to soil vapour vacuum extraction, bioventing uses low air flow rates to provide only enough oxygen to sustain microbial activity. Oxygen is most commonly supplied through direct air injection into residual contamination in soil. In addition to degradation of adsorbed fuel residuals, volatile compounds are biodegraded as vapours move slowly through biologically active soil. Bioventing techniques have been successfully used to remediate soils contaminated by petroleum hydrocarbons, non-chlorinated solvents, some pesticides, wood preservatives, and other organic chemicals.

Factors that may limit the applicability and effectiveness of the process include:

- A high water table within 1-2 m of the surface, saturated soil lenses, or low permeability soils all may reduce bioventing performance.
- Vapours can build up in basements or underneath buildings within the radius of influence of air injection wells. This problem can be alleviated by extracting air near the structure of concern.
- Extremely low soil moisture content may limit biodegradation and the effectiveness of bioventing.
- Monitoring of off-gases at the soil surface may be required.
- Aerobic biodegradation of many chlorinated compounds may not be effective unless there is a cometabolite present, or an anaerobic cycle.

E1.2 ENHANCED BIOREMEDIATION

Enhanced bioremediation is a process in which indigenous or inoculated micro-organisms (e.g., fungi, bacteria, and other microbes) degrade organic contaminants found in soil and/or ground water, converting them to harmless end products. Nutrients, oxygen, or other additives are used to enhance bioremediation and contaminant desorption from subsurface materials. In the presence of sufficient oxygen (aerobic conditions), and other nutrient elements, microorganisms will ultimately convert many organic contaminants to carbon dioxide, water, and microbial cell mass. In the absence of oxygen (anaerobic conditions), the organic contaminants will be ultimately metabolized to methane, limited amounts of carbon dioxide, and trace amounts of hydrogen gas. Under sulfate-reduction conditions, sulfate is converted to sulfide or elemental sulfur, and under nitrate-reduction conditions, nitrogen gas is ultimately produced.

Factors that may limit the applicability and effectiveness bio remediation of the process include:

- Interaction between the soil matrix and microorganisms influence the results;
- Contaminants may be subject to leaching requiring treatment of the underlying ground water;
- Preferential flow paths may severely decrease contact between injected fluids and contaminants throughout the contaminated zones. The system should not be used for clay, highly layered, or heterogeneous subsurface environments because of oxygen (or other electron acceptor) transfer limitations.
- High concentrations of heavy metals, highly chlorinated organics, long chain hydrocarbons, or inorganic salts may be toxic to microorganisms;
- A surface treatment system, such as air stripping or carbon adsorption, may be required to treat extracted groundwater prior to re-injection or disposal; and
- The length of time required for treatment can range from 6 months to 5 years and is dependent on many site-specific factors.

E1.3 CAPPING AND CONTAINMENT

The "cap and contain" method employs a risk minimisation approach similar to "ongoing management", where impacted soils are managed on site so as not to pose an ongoing risk to the environment or human health. Impacted soils are contained by the placement of an impervious barrier or clean fill materials on top of the impacted material to prevent exposure to site occupiers, workers or the environment. The base of this "clean zone" would be clearly marked by a demarcation barrier to indicate that below this depth workers could potentially be exposed to contamination, which would then trigger additional health, safety and environmental controls.

Capping and containment may be an appropriate remedial option for soil containing both organic and inorganic contaminants that contain residual contamination, particularly if the mix of contaminants is not easily treated. The conditions for this remedial action alternative are:

- The contaminant is relatively non-mobile, including low volatility, insoluble and has low migration potential in a soil matrix;
- The primary exposure route to the contaminant and risk to human health is through direct dermal contact, dust inhalation or soil ingestion;
- The primary exposure route for the environment is mitigated through low leaching potential or migration to groundwater; and
- The contained area can be monitored and incorporated into any final land-use plans.

In the use of capping and containment, the focus of the response is to prevent contact with, or exposure to the contaminated soils by human receptors and/or eliminate transport by water to off-site receptors.

E1.4 CHEMICAL OXIDATION/INJECTION

Chemical oxidation remedial strategies involve the addition of an oxidising agent to the soil or groundwater. The rate and extent of degradation of a target chemical of concern is dependent on its susceptibility to oxidative degradation as well as the site conditions, such as pH, temperature, the concentration of oxidant, and the concentration of secondary oxidant-consuming substances such as natural organic matter.

Factors which may limit the applicability and effectiveness of chemical oxidation include:

- Requirement for handling large quantities of hazardous oxidizing chemicals due to the oxidant demand of the target organic chemicals and the unproductive oxidant consumption of the formation;
- Some chemicals of concern are resistant to oxidation; and
- There is a potential for process-induced detrimental effects.

E1.5 EXCAVATION AND OFF-SITE DISPOSAL

Excavation and disposal of contaminated wastes is a frequently used option, typically used when a rapid site remediation program is required or where significant subsurface contamination exists that is potentially impacting on sensitive off-site receptors. Wastes must be classified in accordance with the NSW EPA Guidelines.

Based on the required disposal of the landfill material, this option would adequately address the remediation goals through the removal of the contaminants from the site. Furthermore, with the removal of any identified contaminated fill soils, the long-term liability associated with soil contamination shall be minimised, along with substantial improvement of subsurface site conditions with regard to contamination of soil and groundwater.

E1.6 LAND FARMING

Ex situ land-farming is a proven treatment for petroleum hydrocarbon impacted soils. In general the higher the molecular weight or number of rings in a compound, the slower the degradation rate.

Factors that may limit the applicability and effectiveness of the land farming include:

- The large amount of space required;
- Conditions affecting biological degradation of contaminants (e.g., temperature, rain fall) are largely uncontrolled, which increases the length of time to complete remediation.
- Only suitable for organic contaminants.
- Volatile contaminants, such as solvents, must be pre-treated because they would volatilise into the atmosphere, causing air pollution.
- Dust control is an important consideration, especially during tilling and other material handling operations.
- Runoff collection facilities must be constructed and monitored.

E2 GROUNDWATER

E2.1 ENHANCED BIOREMEDIATION

Bioremediation is a process in which indigenous micro-organisms (i.e., fungi, bacteria, and other microbes) degrade organic contaminants found in soil and/or ground water.

Enhanced bioremediation attempts to accelerate the natural biodegradation process by providing nutrients, electron acceptors, and competent degrading microorganisms that may otherwise be limiting the rapid conversion of contamination organics to innocuous end products.

Oxygen enhancement can be achieved by either sparging air below the water table or circulating hydrogen peroxide (H_2O_2) throughout the contaminated ground water zone. Under anaerobic conditions, nitrate is circulated throughout the ground water contamination zone to enhance bioremediation. Additionally, solid-phase peroxide products (e.g., oxygen releasing compound (ORC)) can also be used for oxygen enhancement and to increase the rate of biodegradation.

Air sparging below the water table increases ground water oxygen concentration and enhances the rate of biological degradation of organic contaminants by naturally occurring microbes. Air sparging also increases mixing in the saturated zone, which increases the contact between ground water and soil. Oxygen enhancement with air sparging is typically used in conjunction with SVE or bioventing to enhance removal of the volatile component under consideration.

During hydrogen peroxide enhancement, a dilute solution of hydrogen peroxide is circulated through the contaminated ground water zone to increase the oxygen content of ground water and enhance the rate of aerobic biodegradation of organic contaminants by naturally occurring microbes.

Solubilized nitrate is circulated throughout ground water contamination zones to provide an alternative electron acceptor for biological activity and enhance the rate of degradation of organic contaminants. Development of nitrate enhancement is still at the pilot scale. This technology enhances the anaerobic biodegradation through the addition of nitrate.

Bio-enhanced remediation strategies are slow and may take several years for plume clean-up.

E2.2 AIR SPARGING

In air sparging, air is injected into a contaminated aquifer where it traverses horizontally and vertically in channels through the soil column, creating an underground stripper that removes contaminants by volatilization. This injected air helps to flush (bubble) the contaminants up into the unsaturated zone where a vapour extraction system is used to remove the vapour phase contamination.

In principal the more volatile a contaminant the more appropriate air sparging as a remediation strategy is. Methane can be added to the system to enhance co-metabolism of chlorinated organics.

Factors that may limit the applicability and effectiveness of the process include:

- Preferential air flow pathways reducing the contact between sparged air and the contaminants;
- Air injection wells must be designed for site-specific conditions; and
- Soil heterogeneity may cause some zones to be relatively unaffected.

E2.3 CHEMICAL OXIDATION

In a chemical oxidation system oxidants are added to the system in order to oxidise the chemical of concern to less toxic species. The Chemical oxidants most commonly employed include peroxide, ozone, and permanganate. These oxidants cause the rapid and complete chemical destruction of

many toxic organic chemicals while some chemicals are subject to partially degradation and subsequently reduced by bioremediation.

In general oxidants are capable of achieving high treatment efficiencies (e.g., > 90 percent) for unsaturated aliphatic (e.g., trichloroethylene [TCE]) and aromatic compounds (e.g., benzene), with very fast reaction rates (90 percent destruction in minutes). Field applications have clearly affirmed that matching the oxidant and in situ delivery system to the contaminants of concern (COCs) and the site conditions is the key to successful implementation and achieving performance goals.

Oxidation using liquid hydrogen peroxide (H_2O_2) in the presence of native or supplemental ferrous iron (Fe⁺²) produces Fenton's Reagent which yields free hydroxyl radicals (OH-). These strong, nonspecific oxidants can rapidly degrade a variety of organic compounds. Fenton's Reagent oxidation is most effective under very acidic pH (e.g., pH 2 to 4) and becomes ineffective under moderate to strongly alkaline conditions. The reactions are extremely rapid and follow second-order kinetics.

Ozone gas can oxidize contaminants directly or through the formation of hydroxyl radicals. Like peroxide, ozone reactions are most effective in systems with acidic pH. Due to ozone's high reactivity and instability, O_3 is usually produced onsite, and requires closely spaced delivery points (e.g., air sparging wells). In situ decomposition of the ozone can lead to beneficial oxygenation and biostimulation.

The following factors may limit the applicability and effectiveness of chemical oxidation include:

- Requirement for handling large quantities of hazardous oxidizing chemicals due to the oxidant demand of the target organic chemicals and the unproductive oxidant consumption of the formation.
- Some COCs are resistant to oxidation.
- There is a potential for process-induced detrimental effects. Further research and development is
 ongoing to advance the science and engineering of in situ chemical oxidation and to increase its
 overall cost effectiveness.

E2.4 REACTIVE BARRIER WALL

Construction of a permeable reactive barrier (PRB) involves the subsurface emplacement of reactive materials through which a dissolved contaminant plume enters on one side of the PRB and treated water exits the other side. This in situ method for remediating dissolved-phase contaminants in groundwater combines a passive chemical or biological treatment zone with subsurface fluid flow management.

PRBs can be installed as permanent or semi-permanent units. The most commonly used PRB configuration is that of a continuous trench in which the treatment material is backfilled. The trench is perpendicular to and intersects the groundwater plume.

Alternately low-permeability walls can be used to direct a groundwater plume toward a permeable treatment zone.

E2.5 PUMP AND TREAT

As its name implies a pump and treat remedial involves the pumping of contaminated of ground water pumping include removal of dissolved contaminants from the subsurface, and containment and treatment the water. The treated groundwater is then either re-introduced into the aquifer or disposed off-site.

The criteria for well design, pumping system, and treatment are dependent on the physical site characteristics and contaminant type. While treatment options may include a train of processes such as gravity segregation, air strippers, and activated carbon filters designed to remove specific contaminants.

The first step in determining whether ground water pumping is an appropriate remedial technology is to conduct a site characterization investigation. Site characteristics, such as hydraulic conductivity, will determine the range of remedial options possible. Chemical properties of the site and plume need to be determined to characterize transport of the contaminant and evaluate the feasibility of ground water pumping. To determine if ground water pumping is appropriate for a site, one needs to know the history of the contamination event, the properties of the subsurface, and the biological and chemical contaminant characteristics. Identifying the chemical and physical site characteristics, locating the ground water contaminant plume in three dimensions, and determining aquifer and soil properties are necessary in designing an effective ground water pumping strategy.

The following factors may limit the applicability and effectiveness of ground water pump and treat options as a remedial option:

- The time frame required to achieve the remediation goal;
- The pumping system fail to contain the contaminant plume as predicted;
- Residual saturation of the contaminant in the soil pores cannot be removed by ground water pumping.
- A pump and treat option is not suitable for contaminants with:
 - high residual saturation;
 - high sorption capabilities; and
 - ▶ homogeneous aquifers with hydraulic conductivity less than 10⁻⁵ cm/sec.
- Potential high operating costs;
- Biofouling of the extraction wells and associated treatment stream may severely affect system performance;
- Subsurface heterogeneities, may severely affect system performance;
- Potential toxic effects of residual surfactants in the subsurface;
- Drawdown pumping generally produces large volumes of water requiring storage and or treatment

E2.6 EXCAVATION

Excavation and disposal of contaminated wastes is a frequently used option, typically used when a rapid site remediation program is required or where significant subsurface contamination exists that is potentially impacting on sensitive off-site receptors. Excavation can also be used to remove primary sources of any groundwater contamination (such as buried tanks or drums and waste disposal areas) and remove the secondary sources of impact (contaminated fill, residual soils and impacted bedrock and bedrock fractures such as joints and bedding planes).

E3 REMEDIATION OPTIONS

The various remediation options were reviewed in a technology matrix to assess their suitability against the various subsurface materials at the site and whether the option meets the primary objectives of the remediation works program, as discussed in **Section 7.3**.

